

Leachate Management and Final Cover Alternatives Analysis Report

Hutsonville Power Station Unlined Ash Impoundment (Pond D) Closure Hutsonville, IL

July 19, 2005

AMEREN SERVICES

LEACHATE MANAGEMENT AND FINAL COVER ALTERNATIVES ANALYSIS REPORT

HUTSONVILLE POWER STATION UNLINED ASH IMPOUNDMENT (POND D) CLOSURE HUTSONVILLE, IL

Project No: 1375

Prepared For:

Ameren Services One Ameren Plaza 1901 Chouteau Avenue St. Louis, Missouri

Prepared By:

Natural Resource Technology, Inc. 23713 W. Paul Road, Suite D Pewaukee, WI 53072

> Final Report July 19, 2005

Christopher A. Robb, PE Project Engineer

Bruce R. Hensel, PG Senior Hydrogeologis

EXECUTIVE SUMMARY

The Hutsonville Power Station in Crawford County Illinois is located on the west bank of the Wabash River approximately 1 mile north of Hutsonville, Illinois. Fly ash from this coal-fired power plant is collected by an electrostatic precipitator and has been sluiced to two ash impoundments.

Groundwater quality has been monitored at this facility since 1984. Concentrations of boron and sulfate, indicator parameters of coal ash leachate, exceed the Section 811.320 applicable background concentrations and Illinois Class I Groundwater Quality Standards at several shallow monitoring wells near an unlined impoundment, Pond D, which is no longer in service. Impacted groundwater is migrating east towards the Wabash River through shallow sediments, which are not utilized as a source of groundwater supply. Elevated concentrations were also noted in shallow monitoring wells along the south property boundary, suggesting potential for off-site migration; however, impacts have not been noted in water samples collected south of the impoundment.

There are five groundwater supply wells within ½ mile of the site, all finished in deep alluvial sand and gravel in the Wabash River valley. Two wells directly east of the unlined impoundment are used for potable and process plant water, and one well southwest and two wells southeast of the impoundment are used for irrigation water. Concentrations of boron and sulfate in samples collected from one on-site monitoring well were higher than 811.320 background concentrations, but lower than Class I groundwater quality standards. Six other monitoring wells screened in the deep alluvial aquifer on the Illinois side of the river show no evidence of impacts.

The primary objective of this alternatives analysis was to evaluate and make recommendations on leachate management, deep alluvial aquifer containment, and final cover alternatives for closure of the unlined ash impoundment (Pond D), based on technical and cost considerations. Alternatives analysis objectives, herein referenced as "Closure Objectives", were identified to protect human health and the environment for both the parameters of concern (POCs, identified in the Hydrogeologic Assessment) and to limit exposure pathways in accordance with applicable environmental standards. Site-specific considerations for establishing appropriate Closure Objectives for Pond D include proximity of the Wabash River to Pond D, hydrogeology and groundwater quality in the vicinity of Pond D, and the presence or absence of exposure pathways for identified POCs (groundwater, soil, and surface water). Based on a review of the regulations promulgated in 35 Illinois Administrative Code (IAC) Part 811 and 814 and site-specific considerations identified above, the following Closure Objectives were developed:

- Manage groundwater quality to meet the requirements of Section 811.320; and
- Construct a final cover system that meets the requirements of Part 811 or an adjusted standard approved by the Illinois Pollution Control Board (PCB).

Specific parameters for performing the alternatives analysis were developed on the basis of: 1) the results of the *1999 Hydrogeologic Assessment, the Groundwater Model Evaluation of Impoundment Closure Options* dated January 2000, and two supplemental investigations performed for this analysis; 2) groundwater flow and transport modeling for selected alternatives; and 3) considerations for pursuing adjusted standards through the Illinois PCB. Four final cover alternatives and four combinations of final cover and leachate management alternatives were carried through the groundwater transport modeling evaluation. Subsequent to the model analysis, four alternatives were selected for detailed analysis:

- Closure Alternative No. 1: Geosynthetic Final Cover with East and South Interceptor Drain/Trench and Groundwater Extraction from the Deep Alluvial Aquifer. This closure alternative adheres to the Section 811.314 requirements for a final cover system, and implements leachate collection along the east and south boundaries of Pond D and groundwater extraction in the deep alluvial aquifer to meet the requirements for meeting applicable groundwater quality standards at the edge of the "zone of attenuation" as defined in Section 811.320(c).
- Closure Alternative No. 2: Earthen Final Cover with South Interceptor Drain/Trench. This closure alternative balances lower cost with leachate collection and is designed to prevent off-site migration of groundwater to the south. Adjusted standards would be required to implement this closure alternative.
- Closure Alternative No. 3: Earthen Final Cover. This closure alternative represents the lowest cost alternative for closure of Pond D and would require adjusted standards to seek relief from several sections of Part 811 and Part 814.302(b)(1).
- Closure Alternative No. 4: Pozzolanic Fly Ash Final Cover. This closure alternative provides equivalent effectiveness to Closure Alternative No. 3 and has the added benefit of providing renewed capacity for the active (Pond A) fly ash impoundment. This alternative would require adjusted standards to seek relief from several sections of Part 811 and Part 814.302(b)(1) utilizing technology and construction techniques substantially similar to those promulgated in 35 IAC Part 816 (Alternative Standards for Coal Combustion Power Generating Facilities Waste Landfills).

Surface water management was considered for each of the selected alternatives. The optimal alternative routes surface water east toward the Wabash River and west toward a drainage collection pond.

Costs for each of the closure alternatives and the alternate final cover are summarized below:

- Closure Alternative No. 1 has the highest initial capital cost (\$6.8 million) and highest operating and maintenance cost (\$3.1 million over 30 years), based on 2003 dollars. Ease of implementation and performance are not concerns as the remedial components consisting of a geosynthetic cover, leachate collection via an interceptor drain/trench and groundwater extraction in the deep alluvial aquifer are demonstrated technologies that are widely available.
- Closure Alternative No. 2 provides significant cost savings versus Alternative No. 1 in up-front capital cost (\$4.7 million) and a lower operating and maintenance cost (\$1.1 million over 30 years). Predicted performance, effectiveness, and reliability along the south impoundment boundary are nearly equivalent to Closure Alternative No. 1.
- Closure Alternative No. 3 represents the lowest cost alternative with significant savings in up-front capital (\$4.2 million) and low operating and maintenance cost (\$0.2 million over 30 years). Groundwater transport modeling suggests that an earthen cover may provide performance and long term effectiveness along the south property boundary similar to Closure Alternatives No. 1 and 2.
- Closure Alternative No. 4 provides performance, reliability, and effectiveness equivalent to the final covers proposed for each alternative at a mid-range capital cost for final cover

(\$4.5 million) and with low long term operating and maintenance costs (\$0.2 million over 30 years). An adjusted standard would be required to gain regulatory acceptance for the technology for construction of a pozzolanic fly ash cover; however, regulatory precedent exists for similar construction of final covers (35 IAC Part 816).

Each of the four alternatives is potentially appropriate for the site with similar performance and effectiveness, and reflects a range of approaches contingent on capital expenditure and varying approval of adjusted standards with the Illinois PCB. However, Closure Alternative No. 4, the Pozzolanic Fly Ash Cover, provides the best balance of capital expenditure and pursuit of adjusted standards for the following reasons:

- Groundwater transport modeling indicates that a pozzolanic fly ash final cover system will have similar performance and effectiveness as a cover system that meets the requirements of Section 811.314 (e.g., geosynthetic final cover).
- Groundwater transport modeling indicates that the pozzolanic fly ash final cover will achieve the Class I Groundwater Quality Standards along the south property boundary (MW-11R) within approximately 16 years, which compares favorably to the ten-year period predicted for Alternative No. 1. This alternative should satisfy long-term regulatory concerns with off-site migration.
- No leachate management is proposed along the east impoundment boundary. However, groundwater impacted by ash leachate discharges to the Wabash River and does not threaten any downgradient groundwater receptors. Based on this discussion, pursuit of an adjusted standard for the applicable groundwater quality standards along the east edge of the "zone of attenuation" is warranted.
- Regulatory precedent exists (35 IAC 816) for construction of a pozzolanic fly ash final cover system using substantially similar technology and construction techniques.
- Significant cost savings may be realized through construction of a pozzolanic fly ash final cover by providing additional capacity for fly ash in Pond A. Based on this discussion, pursuit of an adjusted standard for construction of a pozzolanic fly ash final cover is warranted.

TABLE OF CONTENTS

1	INTRODUCTION			1-1	
	1.1	Backgr	ound	1-1	
	1.2	Investi	gation Time Line	1-2	
	1.3	Alterna	tives Analysis Objectives and Approach	1-3	
2	SUM	MARY C	OF SITE CONDITIONS	2-1	
	2.1	Supple	mental On-Site Investigation: October 2001	2-1	
		2.1.1	Advancement of Soil Borings	2-1	
		2.1.2	Installation / Abandonment of Monitoring Wells	2-2	
		2.1.3	Hydraulic Testing	2-3	
	2.2	Supplemental Off-Site Investigation: April and May 20042-		2-3	
		2.2.1	Installation of Monitoring Wells	2-3	
		2.2.2	Hydraulic Testing	2-5	
	2.3	Ground	dwater Sampling and Analysis	2-5	
	2.4	Summa	ary of Hydrogeology and Groundwater Quality	2-6	
		2.4.1	Distribution of Coal Ash Fill	2-6	
		2.4.2	Hydrogeology	2-6	
		2.4.3	Evaluation of Daily Groundwater and River Elevation Data	2-7	
		2.4.4	Groundwater Quality and Parameters of Concern	2-7	
		2.4.5	Background Concentrations	2-7	
		2.4.6	Groundwater Quality		
	2.5	Exposu	Ire Pathways (Groundwater, Soil, Surface Water)	2-10	
3	IDENTIFICATION OF LEACHATE MANAGEMENT AND FINAL COVER ALTERNATIVES3-1				
	3.1	Identific	cation of Alternatives Overview	3-1	
	3.2	Leacha	te Management and Deep Alluvial Aquifer Source Control Alternatives		
		3.2.1	Selection of Alternatives for Initial Screening	3-2	
		3.2.2	Site Monitoring with No Leachate Collection	3-2	
		3.2.3	Groundwater Extraction - Leachate Collection Alternatives		
		3.2.4	Source Control of the Deep Alluvial Aquifer	3-3	
		3.2.5	Ash Stabilization	3-4	
		3.2.6	Ash Removal and Disposal, Recycling at an Off-Site Facility, or Benefic Reuse		
		3.2.7	Ash Impoundment Reconstruction	3-5	
		3.2.8	Containment Using a Low-Permeability Barrier Wall		
	3.3	Final C	over Alternatives		
	3.4		e Water Management Alternatives		
	3.5	Initial S	Screening Criteria and Results	3-8	

Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3

,

	3.6	Treatat	pility Study for a Pozzolanic Fly Ash Final Cover	3-10
4	MOD	ELING A	AND EVALUATION OF SELECTED ALTERNATIVES	4-1
	4.1	Purpos	е	4-1
	4.2		Approach	
		4.2.1	HELP Modeling	
		4.2.2	MODFLOW/MT3DMS	
		4.2.3	Criteria for Evaluation of Modeling Results	
		4.2.4	Simulation of Final Cover and Leachate Management Alternatives	
		4.2.5	Simulation of Deep Alluvial Aquifer Source Control Alternative	
	4.3	Modelir	ng Results and Recommendations for Alternative Assembly	
		4.3.1	Modeling Results: Final Cover Alternatives	
		4.3.2	Modeling Results: Final Cover Alternatives Combined with Leachate Management Alternatives	4-5
		4.3.3	Recommendations for Alternatives Assembly	
5	ASSE		AND DETAILED ANALYSIS OF CLOSURE ALTERNATIVES	
	5.1	Asseml	bly and Selection Rationale	5-1
	5.2		d Analysis of Closure Alternatives	
	5.3		mended Closure Strategy	
	5.4		mended Pre-Design Evaluation and Field Testing	
6	REFE		S	

FIGURES

Figure 1-1	Site Location Map (1375-A03)
Figure 1-2	Site Plan (1375-61-B30)
Figure 2-1	Geologic Cross Sections (1375-61-B01)
Figure 2-2	Groundwater Elevation Contours, September 14, 2004 (1375-61-A04)
Figure 2-3	Groundwater Elevation Contours, October 26, 2004 (1375-61-A03)
Figure 2-4	Groundwater Elevation Contours, November 16, 2004 (1375-61-A02)
Figure 2-5	Comparison of Groundwater Elevation Data to Well Pumpage – September- November 2004
Figure 2-6	Boron Concentration in Background Wells
Figure 2-7	Sulfate Concentration in Background Wells
Figure 5-1	Alternative No. 1: PVC Final Cover With East and South Interceptor Drain/Trench and Deep Groundwater Extraction System (1375-61-B03C)
Figure 5-2	Alternative No. 2: Earthen Final Cover With South Interceptor Drain/Trench (1375-61-B04C)
Figure 5-3	Alternative No. 3: Earthen Final Cover or Pozzolanic Fly Ash Final Cover (1375-61-B05C)

TABLES

- Table 2-1
 Soil Boring and Discrete Groundwater Sampling Data
- Table 2-2Monitoring Well Locations, Elevations, Depth to Bedrock, and Screened
Formation
- Table 2-3 Monitoring Well Completion Details
- Table 2-4
 Monitoring Well Slug Test Results
- Table 2-5
 Background Statistical Summary
- Table 2-6
 Groundwater Concentration Results from Monitoring Wells
- Table 3-1
 Initial Screening of Leachate Management and Final Cover Alternatives
- Table 3-2
 Areal Extent and Volumes of Unsaturated and Saturated Ash in Pond D
- Table 3-3
 Final Cover Alternatives Material Balance Analysis
- Table 3-4Comparison of Recommended Mix Designs to Performance Goals and Cost
Sensitivity Analysis
- Table 4-1
 Selected Alternatives for Groundwater Flow and Transport Modeling
- Table 4-2
 Groundwater Flow and Transport Model Results
- Table 5-1
 Closure Alternatives Cost Summary
- Table 5-2
 Detailed Analysis of Closure Alternatives

APPENDICES

Appendix A:	Supplemental S	Site Investigation	Appendices
	eappronionian e	nie niedagaadn	, .pp0

- A-1: Soil Boring Logs
- A-2: Monitoring Well Completion Reports and Abandonment Log
- A-3: Slug Test Data
- A-4: Groundwater Sampling SOP (AEG)
- Appendix B: Alternative Cost Summary Sheets
- Appendix C: Treatability Study for a Pozzolanic Final Cover System
 - C-1: Conceptual Development of Pozzolanic Cap for Closure of Basin D at The Hutsonville Power Station
 - C-2: VFL Cost Data
- Appendix D: Groundwater Transport Modeling Results and Supporting Documentation
- Appendix E: Statistical Calculations
- Appendix F: Groundwater Velocity Calculation

1 INTRODUCTION

1.1 Background

Ameren Energy Generating operates the Hutsonville Power Station in Crawford County Illinois (Figure 1-1). The power station is located on the west bank of the Wabash River, 1 mile north of the city of Hutsonville (SW ¼, Section 17, Township 8N, Range 11W). The coal fired power plant has been in operation since the 1940's. There are currently two units operating at the plant, completed in 1953 (unit 3) and 1954 (unit 4), with a combined generating capacity of 164 MW. Fly ash from the operating units is collected by an electrostatic precipitator and sluiced to a 12-acre lined ash impoundment (Pond A, Figure 1-2), which was constructed in 1984. Bottom ash is sluiced to a separate pond and eventually recycled. Sluice water from Pond A is routed through a 4.2-acre lined interim pond (Pond B, constructed in 2000) before discharge to the Wabash River via a NPDES permitted outfall #002 (IL0000175). Sluice water from the bottom ash pond is routed through a 1.7-acre drainage collection pond (Pond C, constructed in 2000) and Pond B before discharge to the Wabash River via the same outfall.

The site also has a 22-acre unlined ash impoundment (Pond D), which was constructed in 1968. This impoundment was the primary ash management unit prior to construction of Pond A in 1984, and was used as a secondary settling pond from 1984 through construction of Pond B in 2000. It has been inactive since 2000, although precipitation and flood backwater have accumulated in the impoundment at times, resulting in ponded conditions.

Groundwater quality has been monitored at this facility since 1984. Concentrations of boron and sulfate at several monitoring wells exceed the 35 Illinois Administrative Code (IAC) 811.320 groundwater quality standards (Section 811.320 applicable background concentrations) and the Illinois Class I groundwater quality standards. Boron and sulfate are indicator parameters for coal ash leachate. In response to these findings, Ameren Services contracted Science & Technology Management, Inc. (STMI) and Natural Resource Technology Inc. (NRT) to perform a Hydrogeologic Assessment that was completed in August 1999.

The Hydrogeologic Assessment identified a correlation between shallow groundwater quality (elevated boron and sulfate concentrations in groundwater) and potential leachate sources, namely the former ash laydown area (which was excavated prior to construction of Ponds B and C) and the unlined ash

1375 Alternatives Analysis Report-Final

impoundment (Pond D). Boron and sulfate are migrating east towards the Wabash River; however, there are no groundwater supply wells in the shallow sediments between the unlined ash impoundment and the Wabash River.

There are four groundwater supply wells within ½ mile of the site, all finished in a deep alluvial sand and gravel aquifer in the Wabash River valley. Two wells are directly east of the unlined impoundment and are used for plant water, and two wells are southeast of the impoundment and used for irrigation water. Groundwater quality data from monitoring well MW-14, which is directly southeast of the unlined ash impoundment and is screened in the deep alluvial sand and gravel, indicates evidence of ash impoundment impacts in that aquifer, based on comparison to Section 811.320 applicable background concentrations. However, concentrations are lower than the Illinois Class I groundwater quality standards.

1.2 Investigation Time Line

· · · ·	
1999	The <i>Hydrogeologic Assessment</i> report characterizes hydrogeology at the site and identifies Pond D and an ash laydown area as the sources of shallow groundwater quality impacts at the site. No evidence of groundwater impacts are found in the deep alluvial aquifer.
2000	A Groundwater Model Evaluation of Impoundment Closure Options concludes that dewatering of Pond D will reduce leachate loading to the Wabash river by more than 80 percent; however, no capping option will result in attainment of Class I groundwater quality standards due to continuing groundwater flow through ash deposited below the water table.
2000	Ash in the former ash laydown area is removed, Ponds B and C are constructed, and Pond D is permanently removed from service.
2001	A supplemental site investigation is performed for this alternatives assessment. Additional monitoring wells are installed in the deep alluvial aquifer. There is no evidence of ash impacts in the deep alluvial aquifer.
2002	Research is performed for an innovative approach to capping Pond D.
2003	The first draft of this Alternatives Assessment report and a petition for adjusted standards is completed. After a meeting and discussion of preliminary results, IEPA determines that a Groundwater Impact Assessment is required for the deep alluvial aquifer.
Spring 2004	After delays in obtaining site access on off-site private property, an investigation is performed to characterize hydrogeology in the deep alluvial aquifer.
2005	During a data review, it is determined that MW-14 has elevated boron and sulfate concentrations. In response to this finding, it is determined that the <i>Groundwater Impact Assessment</i> is no longer necessary, and a plan is developed to sample the off-site wells to determine whether or not groundwater impacts in the deep alluvial aquifer extend to the south; however, flood conditions on the Wabash river delay data collection. Work commences on completion of this <i>Alternatives Analysis</i> .

1375 Alternatives Analysis Report-Final

1.3 Alternatives Analysis Objectives and Approach

The primary objective of the alternatives analysis is to evaluate and make recommendations on leachate management and final cover alternatives for closure of the unlined ash impoundment (Pond D), based on technical and cost considerations. Alternatives analysis objectives, herein referenced as "Closure Objectives", were identified for protecting human health and the environment for both the parameters of concern (POCs, identified in the Hydrogeologic Assessment) and exposure pathways in accordance with applicable environmental standards. Site-specific considerations for establishing appropriate Closure Objectives for Pond D include proximity of the Wabash River to Pond D, hydrogeology and groundwater quality in the vicinity of Pond D, and the presence, or absence, of exposure pathways for identified POCs (groundwater, soil, and surface water).

Standards are promulgated for the design and operation of solid waste landfills under 35 Illinois Administrative Code (IAC) Parts 810 to 816. Based on a review of these regulations and on site-specific considerations, the following Closure Objectives were developed:

- Manage groundwater quality to meet the requirements of Section 811.320; and
- Construct a final cover system that meets the requirements of Part 811 or an adjusted standard approved by the Illinois Pollution Control Board (PCB).

Specific parameters for performing the alternatives analysis were developed on the basis of: 1) the results of the 1999 *Hydrogeologic Assessment*, the *Groundwater Model Evaluation of Impoundment Closure Options* dated January 2000, and supplemental investigations performed for this analysis (Section 2); 2) additional groundwater flow and transport modeling of alternatives (Section 4); and 3) considerations for pursuing adjusted standards through the Illinois PCB. The range of technological applications considered included conventional and innovative alternatives.

Tables 3-1, 3-2, 3-3, 4-1, 4-2, 5-1, and 5-2 summarize the findings of this alternatives analysis, which are described in Sections 3, 4, and 5. This alternatives analysis process was developed to meet the substantive regulatory requirements of 35 IAC Part 811 and is divided into four major stages as follows:

Initial Screening: This stage consisted of three steps. First, site specific Closure Objectives were established to address parameters of concern and exposure pathways (Section 3.1). Second, closure alternatives to meet these objectives were divided into three categories: 1) leachate management alternatives; 2) final cover alternatives; and 3) surface water management alternatives. Third, these alternatives were initially screened on the basis of construction / implementation feasibility, effectiveness, and cost (Table

¹³⁷⁵ Alternatives Analysis Report-Final

3-1). Alternative specific rough cost estimates were developed at this stage (Appendix B).

- <u>Groundwater Transport Modeling and Secondary Effectiveness Evaluation</u>: The closure alternatives that met the initial screening criteria were combined into model scenarios for prediction of their effects on groundwater quality using a calibrated groundwater flow and transport model (Table 4-1). These results were used to reduce the number of alternatives that would be subject to the next step of detailed analysis (Table 4-2).
- Assemble Alternatives for Detailed Analysis: Specific closure alternatives that met the secondary effectiveness screening criteria were evaluated with respect to meeting the Closure Objectives, regulatory acceptance, and relative cost (Section 5.1). From these alternatives, four were selected that represented a range of closure alternatives on the basis of the following criteria: 1) an alternative that meets the requirements of 35 IAC Parts 811 and 814; 2) an alternative that meets the "effectiveness criteria" (Section 4.2.3) with adjusted standards and includes leachate collection; 3) an alternative that represents the lowest cost alternative and meets the "effectiveness criteria" (Section 4.2.3) with adjusted standards and no leachate collection; and, 4) an alternative that meets the "effectiveness criteria" of 35 IAC Part 811 and 814 through utilization of technology and construction techniques substantially similar to those promulgated in 35 IAC Part 816 (Alternative Standards for Coal Combustion Power Generating Facilities Waste Landfills).
- Detailed Analysis: The four final closure alternatives were further evaluated in terms of total cost (Table 5-1) and in general accordance with the criteria listed in Table 5-2 to develop a final recommendation for the site. These criteria include the degree to which the proposed remedy is protective of human health and the environment, short and long term effectiveness, ease of implementation, performance, reliability, potential impacts, time-frame for completion, cost, and institutional requirements required for regulatory acceptance.

2 SUMMARY OF SITE CONDITIONS

Hydrogeology and groundwater quality were thoroughly characterized in the Hydrogeologic Assessment report. Additional field investigation was performed for this project to upgrade the monitoring well system surrounding Pond D, characterize the deep alluvial aquifer, and to collect detailed information specific to the alternatives assessment.

2.1 Supplemental On-Site Investigation: October 2001

The first supplemental site investigation was performed from October 1 to 4, 2001. The scope of work included: 1) advancement of six soil borings (SB-101 through SB-106); 2) installation of one additional monitoring well (MW-14) and one temporary monitoring well (TW); and 3) abandonment of monitoring well MW-11 and replacement with MW-11R. In addition, hydraulic conductivity tests were performed on selected new and existing monitoring wells.

2.1.1 Advancement of Soil Borings

An all-terrain drill rig equipped with 4 ¼-inch hollow-stem augers was used to perform all soil borings, direct push sampling, and monitoring well installations at the site. A total of nine soil borings were advanced at the site, two of which were converted into permanent monitoring wells (MW-11R and MW-14) and one that was converted into a temporary monitoring well (TW). Soil borings SB-101 through SB-103 were advanced to better characterize the type and extent of geologic materials surrounding Pond D. Soil borings SB-104 through SB-106 were advanced north of the ash impoundment to find a suitable location for a background monitoring well within the deep alluvial sand and gravel. The latter borings were drilled in the only accessible locations that were not downgradient of the ash impoundments. However, shallow bedrock was encountered at all three locations, and a natural coal seam was encountered at SB-106, indicating that the Wabash River was over the west side of the valley in this area. As a result, an upgradient well could not be installed within the deep sand and gravel of the valley.

Geologic materials at all soil borings were logged every 2½ feet using a 2-inch diameter by 2-foot long split-barrel sampler. The soil borings were advanced to bedrock, to design depth, or adjusted in the field as necessary ranging from 9 feet to 39 ½ feet below ground surface (Table 2-1). Upon completion of

sampling, all soil borings were backfilled with bentonite chips and hydrated, or converted into monitoring wells (Appendix A-1).

During advancement of soil borings SB-102, MW-14, and TW, a hydro-punch discrete water sampler was used to collect groundwater samples at targeted depths (Table 2-1). The purpose of the discrete water sampling was to determine the geologic formation(s) where ash leachate was most prevalent and better assess the feasibility of leachate collection surrounding Pond D. Discrete samples were designed to target groundwater 1) in the shallow silty alluvial sediments, 2) immediately below the silt interface at the top of the deep alluvial sand, and 3) at depth in the deep alluvial sand (a minimum of 10 feet below the silty alluvium). This analysis showed decreasing concentrations with depth; however, interpretation of results was uncertain due to potential vertical migration within the borehole.

2.1.2 Installation / Abandonment of Monitoring Wells

Monitoring well MW-14 was installed to support the creation of a groundwater monitoring network surrounding Pond D. The screen of MW-14 is designed to monitor the deep alluvial sand and gravel aquifer immediately underlying the shallow alluvial silt and clay unit. The temporary monitoring well (TW) was installed to provide additional data for characterization of the deep alluvial aquifer. The screen of TW monitors the deep sand and gravel aquifer at a depth of nine feet below the silt and clay unit.

Monitoring well MW-11R was installed to replace monitoring well MW-11, which was yielding anomalous results. Monitoring well MW-11R was screened in unlithified materials atop shallow bedrock.

All of the wells were constructed with 2-inch inner diameter (I.D.), schedule 40 PVC pipe, flush-threaded to a 5 foot (MW-14 and TW) or 10 foot (MW-11R) long section of 0.010-inch, factory slotted PVC well screen (Tables 2-2 and 2-3). From bottom to top the monitoring wells were completed with: 1) filter pack consisting of uniform silica (#5) sand to at least one foot above the well screen; 2) one-half to two feet of fine (#7) sand; and 3) a minimum of two feet of hydrated bentonite chips to near ground surface (Appendix A-2). All of the monitoring wells were finished with stick-up style, locking steel well protective casings, surrounded by a set of steel bumper posts.

Following well completion, all wells were developed to remove sediment and restore groundwater flow surrounding the well.

2.1.3 Hydraulic Testing

Single well recovery tests were performed on newly installed wells and wells that were not previously tested. Wells MW-1, MW-14, MW-11R, and TW were tested. Well MW-8 could not be tested due to slow recovery after groundwater sampling. Data were collected using an In-Situ HermitTM datalogger and pressure transducers. Pressure transducers and disposable bailers were placed in the wells, and time was allowed for groundwater to reach equilibrium. After groundwater had returned to static water level, the transducers were linked to the datalogger and set to begin. A slug of water was removed using a disposable bailer with approximately 0.037 ft³ of displacement for wells MW-1 and MW-11R. Two disposable bailers (0.074 ft³ of displacement) were joined together and used to remove the slug at well MW-14, and three bailers (0.11 ft³ of displacement) were used at TW due to the static head of the water table and the screened formation. Test duration was about 25 minutes, or until water had returned to static level. Upon test completion, the data were downloaded and processed using the Aqtesolv software.

Data were interpreted using the Bower-Rice (1976) method (Table 2-4, Appendix A-3). Slug test results from wells MW-14 and MW-11R could not be interpreted due to an equipment malfunction.

2.2 Supplemental Off-Site Investigation: April and May 2004

The supplemental off-site investigation was performed from April 26 to May 13, 2004. The scope of work included: 1) installation of seven temporary monitoring wells (TW-115S through TW-120); 2) deployment of downhole dataloggers for continuous groundwater elevation observations in TW-115S, TW-115D, and TW-118; 3) performance of single well recovery (slug) tests on new wells to characterize aquifer characteristics near the monitoring points; 4) survey of all new wells; and 5) collection of groundwater elevation data at all new and existing wells. In addition, pumpage data for the two plant water wells was collected and analyzed to determine the effect of pumpage on the nearby monitoring wells (TW-115S and TW-115D).

2.2.1 Installation of Monitoring Wells

An all-terrain drill rig equipped with 4 ¹/₄-inch hollow-stem augers was used to perform all monitoring well installations during the 2004 supplemental investigation. Geologic materials at all well locations were logged continuously to the extent practicable using a 2-inch diameter by 2-foot long split-barrel sampler. Rock cores were collected from borings TW-115D, TW-116, and TW-119 utilizing a diamond-tipped rock core barrel. Each of the wells was constructed with 2-inch inner diameter (I.D.), schedule 40

PVC pipe, flush-threaded to a 5-foot long section of 0.010-inch, factory slotted PVC well screen (Tables 2-2 and 2-3). From bottom to top the monitoring wells were completed with: 1) filter pack consisting of uniform silica (#40) sand to at least 1 foot above the well screen; 2) 1 foot of fine (#7) sand; and 3) a minimum of 2 feet of hydrated bentonite chips to near ground surface (Appendix A-2). All of the monitoring wells were finished with stick-up style, locking steel protective casings.

<u>TW-115S and TW115D</u> were drilled directly north of EW2, as close to the river as possible (Figure 2-1), to be used in conjunction with existing well MW-7D and pumpage records from EW1 and EW2 to determine the effects of plant pumpage on groundwater flow within the deep alluvial aquifer. TW-115D was drilled to bedrock and cored 15 feet into the shale, to a total depth of 105 feet below ground surface (bgs). The borehole was then backfilled with bentonite to approximately 88 feet bgs and the well was screeened near the base of the deep alluvial aquifer to characterize the vertical flow within the aquifer. TW-115S was blind drilled to 36 feet and screeened near the top of the aquifer.

<u>TW-116 and TW-117</u> were drilled approximately one-half mile south/southeast of the impoundment, on the west side of the river. TW-116, farther from the river, was drilled to a depth of 79.2 feet bgs (cored 19 feet into shale), backfilled with bentonite to 55 feet bgs (approximately five feet above the bedrock), and then the augers were rotated backwards out of the hole to allow the sand and gravel to collapse. The well screen was set at 30 feet bgs in clayey sand to gravel, at what was assumed to be the top of the deep alluvial aquifer. Subsequent review of the lithology determined that TW-116 is actually screened in the fine-grained alluvium above the deep alluvial aquifer. TW-117, closer to the river, was drilled to a total depth of 90.5 feet bgs (six inches into shale); the augers were then rotated backwards out of the borehole and the borehole was allowed to collapse to a depth of 21 feet bgs. The well screen was set at 20 feet at the same approximate elevation as TW-116 to allow the two wells to serve as downgradient groundwater elevation calibration points and as lithologic controls on the configuration of the bedrock valley.

<u>TW-118, TW-119, and TW-120</u> were drilled east of the river. Only TW-119 was drilled to bedrock, as bedrock depth at TW-118 was assumed to be similar to TW-115D and TW-120 was assumed to be similar to TW-119. TW-119 was cored 20 feet into shale, to a total depth of 100 feet bgs. The borehole was sealed with bentonite to 75 feet bgs, approximately five feet above bedrock. The hole was then allowed to collapse as the augers were rotated out to a depth of 21 feet bgs. All three wells were screened near the top of the aquifer.

2.2.2 Hydraulic Testing

Single well recovery tests were performed on newly installed wells. Well TW-120 could not be tested because the depth to groundwater was greater than the length of the pressure transducer cord. Data were collected using a laptop and MiniTrollTM pressure transducers. Pressure transducers were placed in the wells and the tests started. A 0.061 ft³ steel slug was inserted, and time was allowed for groundwater to reach equilibrium (slug-in test). After groundwater had returned to static water level, the slug was removed and the water column left to equilibrate again (slug-out test). Test duration was 1 to 10 minutes. Upon test completion, the data were downloaded and interpreted using the Bower-Rice (1976) method as coded in the Aqtesolv software, with the exception of TW-115S and TW-118, which were interpreted using the Butler (1998) analysis method (Table 2-4, Appendix A-3).¹

The MiniTroll[™] dataloggers were then deployed in wells TW-115S, TW-115D, and TW-118 for continuous groundwater elevation observations. The dataloggers were set to take pressure head readings of the height of the water column above the transducers every hour for six months.

2.3 Groundwater Sampling and Analysis

Groundwater sampling was performed by AEG according to their standard operating procedure (Appendix A-4). Analysis was performed by PDC laboratories. Analytical methods are listed below:

Analyte	Method	
Alkalinity, Tot	SM (18) 2320B	
Boron, Tot	SW-846 6020B R0.0	
Calcium, Tot	EPA 7140 (prior to 2002)	
	SW-846 6020B R0.0 (since 2002)	
Hardness, total	SM (18) 2340C	
Manganese, Tot	243.1 (prior to 2002)	
	SW-846 6020B R0.0 (since 2002)	
Sulfate, Tot	375.4 (prior to 2002)	
	EPA 300.0 R2.1 (since 2002)	
TDS	160.1 (prior to 2002)	
	SM (18) 2540C (since 2002)	

¹ Only one of the two (in or out) tests is reported if the other test yielded a non-linear recovery curve.

¹³⁷⁵ Alternatives Analysis Report-Final

2.4 Summary of Hydrogeology and Groundwater Quality

2.4.1 Distribution of Coal Ash Fill

Ash at the Hutsonville Power Station has been managed in Ponds A and D. In addition, ash was placed in a laydown area between the southern portions of Ponds A and D. The ash laydown area was roughly triangular in shape and covered an area of about 6 acres. In 2000, all ash in the laydown area was excavated, and the interim pond (Pond B) and drainage collection pond (Pond C) were constructed in that general location.

Four direct-push probe holes (GP-20 through GP-23) advanced through Pond D during the 1999 Hydrogeologic Assessment indicated ash thickness ranging from about 12 feet at the north end of the impoundment to 31 feet in the central portion of the impoundment (Section C-C'; Figure 3 in the Hydrogeologic Assessment report). Ash in the central and southern portions of Pond D extended as much as 16 feet below the normal water table elevation.

2.4.2 Hydrogeology

The upland portion of the site is underlain by a thin (less than 20 feet thick) layer of sand-rich soil, which is underlain by Pennsylvanian-age sandstone. The lowland portion of the site is in the Wabash River valley, and is underlain by 90 feet of alluvium that coarsens downward. The upper alluvium consists of silt and clay, with a thickness of 5 to 30 feet (Figure 2-1). The lower alluvium is sand and gravel, which extends to Pennsylvanian-age shale at 60 to 90 feet bgs.

The water table throughout most of the upland area occurs within the surficial sand unit. Groundwater flow in this unit is east, toward the Wabash River (see Figures 5 and 6 in the 1999 Hydrogeologic Assessment report). Flow velocity in the upper sand varies with hydraulic gradient and hydraulic conductivity, and was previously reported at 150 to 240 feet per year.

The water table within the Wabash River valley occurs in the surficial silt and clay deposits; therefore, the deep alluvial aquifer is confined. Groundwater flow in the deep alluvial aquifer on the Illinois side of the river is east to northeast, toward the Wabash River (Figures 2-2, 2-3, and 2-4). A typical horizontal gradient in the deep alluvial aquifer south of the site was 0.002 ft/ft (Appendix F). Horizontal groundwater flow velocity was estimated to be approximately 66 ft/yr in the deep alluvial aquifer (Appendix F). The relatively low velocity is a function of the flat gradients in this formation. The high

hydraulic conductivity of this formation $(2.2 \times 10^{-3} \text{ to } 1.6 \times 10^{-1} \text{ cm/s})$ combined with its thickness indicates a highly transmissive formation.

2.4.3 Evaluation of Daily Groundwater and River Elevation Data

Groundwater elevation in TW-115D, TW-115S, and TW-118 were continuously measured² and the results compared to determine whether or not power plant pumpage has noticeable effects on groundwater elevation in the deep alluvial aquifer.

There was no apparent relationship between plant pumpage and groundwater elevation (Figure 2-6). This indicates that the cone of depression associated with the plant wells is small, as might be expected given the high transmissivity of the deep alluvial aquifer.

2.4.4 Groundwater Quality and Parameters of Concern

The 1999 Hydrogeologic Assessment identified boron, sulfate, manganese, and TDS as parameters of concern (POCs) because their concentrations in groundwater near Pond D exceeded Illinois Class I groundwater quality standards, which were the applicable standards for this site at the time. Boron and sulfate are indicator parameters of coal ash leachate, and are the primary POCs. Manganese is ubiquitous in soils, may have higher concentrations in soil than in coal ash, and is highly sensitive to redox conditions; therefore, it is not a reliable indicator of coal ash leachate. High TDS may be observed at sites where coal ash leachate migration occurs, because high TDS concentrations reflect elevated concentrations of soluble ash constituents such as calcium, potassium, sodium, and sulfate; however, other natural and anthropogenic sources can cause high TDS concentrations.

2.4.5 Background Concentrations

Background groundwater quality values were calculated in anticipation of site closure under Section 811. These calculations were performed using data from background wells MW-1 and MW-10.³ Data at these wells were collected beginning in 1984. However, review of these data found anomalously high results for Boron in MW-1, which appear to decrease over time (Figure 2-7). Sulfate concentrations show no

² Due to an equipment malfunction, continuous data were only available for TW-115S after September 2004.

³ MW-10D was not used because it is finished in sandstone.

¹³⁷⁵ Alternatives Analysis Report-Final

such anomaly and have no trend (Figure 2-8). As noted previously, sulfate is also an indicator parameter for coal ash leachate, and the absence of sulfate suggests that the elevated boron concentrations in MW-1 were not due to migration from the ash ponds. Rather, these results may reflect changes in agricultural activity in the area.⁴

Trend analysis was repeatedly performed using the Shapiro-Wilk test, retroactively from 2005 (i.e., based on 2000 to 2005 data, then based on data from 1999 to 2005, then based on 1998 to 2005, etc). This analysis indicated that there is no statistical trend in boron concentrations in either background well since 1998 (Appendix E). Therefore, all background statistics for the upper aquifer are calculated using data collected after January 1, 1998.

All statistical calculations were performed using the MANAGES software (EPRI, 2002). Analyses were performed for the parameters currently monitored at Ponds A and D. The data were first tested for normality and detection frequency. There were few non-detects in the database, and normality varied by parameter. Based on the normality results, the following background tests were performed:

- Tolerance interval at 99 percent confidence and 95 percent coverage for data with a normal distribution (TDS);
- Tolerance interval at 99 percent confidence and 95 percent coverage for data with a lognormal distribution (boron and manganese);
- Non-parametric tolerance interval (maximum concentration) for data that had neither a normal or log-normal distribution.

Background statistical analysis results are summarized in Table 2-5, and the adjusted 811.320 background standards are compared to analytical results in Table 2-6a. Background data and statistical print-outs are included in Appendix E.

There are no locations on the power plant property where an upgradient monitoring well could be screened in the deep alluvial aquifer. The river abuts the west side of the valley north of Pond D, the aquifer does not extend west of Pond D, and Pond D extends to the southern property boundary. As discussed in Section 2.4, groundwater flow in this formation is primarily eastward toward the Wabash River.

⁴ Boron is a common constituent in agricultural fertilizers and pesticides, which account for 3 percent of the boron consumed in the United States (Source: USGS, 2003; http://minerals.usgs.gov/minerals/pubs/commodity/boron/boronmyb03.pdf)

¹³⁷⁵ Alternatives Analysis Report-Final

Nine monitoring wells were installed in the deep alluvial aquifer, five on the plant property near Pond D (MW-7D, MW-14, TW, TW-115S, and TW-115D), one⁵ south of the plant property (TW-117) and three east of the Wabash River (TW-118, TW-119 and TW-120). Six of these wells have been in place since 2004 (TW-100 series) and do not have sufficient data for statistical analysis, and one (MW-14) shows elevated boron and sulfate concentrations, indicative of ash pond impacts. As a result, background concentrations were calculated using two of the older wells, MW-7D and TW, which are hydraulically downgradient of the impoundment, but are not impacted by power plant activities. The background calculations were performed using the same approach as for the shallow sand:

- Tolerance interval at 99 percent confidence and 95 percent coverage for data with a normal distribution (alkalinity, calcium, sulfate, TDS);
- Tolerance interval at 99 percent confidence and 95 percent coverage for data with a lognormal distribution (boron);
- Non-parametric tolerance interval (maximum concentration) for data that had neither a normal or log-normal distribution.

Deep alluvial aquifer background statistical analysis results are summarized in Table 2-5, and the adjusted 811.320 background standards are compared to analytical results in Table 2-6b. The resulting background concentrations were similar to those calculated for the upper sand, with the exception of sulfate, which was considerably lower (Table 2-5). Background data and statistical print-outs are included in Appendix E.

2.4.6 Groundwater Quality

Boron concentrations exceeded the Section 811.320 applicable background concentrations and Class I groundwater quality standards at monitoring wells MW-6, MW-7, MW-8, and MW-11R, which are downgradient of Pond D (Table 2-6a). The highest boron concentrations were observed along the south perimeter of Pond D (MW-6 and MW-11R), and in the shallow silt unit downgradient of Pond D (MW-8). Sulfate concentrations exceeded the applicable background concentrations and Class I groundwater quality standards at the same four wells.

⁵ TW-116 is screened in fine-grained alluvium just above the deep alluvial aquifer (note the relatively low hydraulic conductivity value listed in Table 2-4). The sand pack for this well extends into the deep alluvial aquifer, and it is a valid point for measuring groundwater elevation in that formation; however, it will not yield samples representative of groundwater in the deep alluvial aquifer.

¹³⁷⁵ Alternatives Analysis Report-Final

Since 2002, sulfate and boron were detected at concentrations higher than the 811.320 applicable background concentrations at monitoring well MW-14 (Table 2-6b) that is screened in the deep alluvial aquifer; although these concentrations are lower than Class I groundwater quality standards. Ash impacts were not evident until 2004 when boron concentrations were consistently higher than 1 mg/L. Sulfate and boron concentrations are lower than 811.320 applicable background concentrations at well TW-115S and TW-115D.

Boron was detected at a concentration higher than background in off-site well TW-116, which is screened in clayey sand to gravel near the base of the shallow fine-grained alluvium. However, sulfate concentrations in this well are low. The lack of sulfate, which is more mobile than boron, indicates that the boron is from a different source than the ash pond, possibly due to fertilizer use in nearby agricultural fields, similar to the elevated boron concentrations noted in Background well MW-1 prior to 1998. TW-116 will be replaced with a well nest screened in the deep alluvial aquifer. TW-117 has low boron and sulfate concentrations.

The water quality results at TW-117 indicate that the ash impacts observed at MW-14 have not migrated to the south. The deep alluvial aquifer does not extend west or north of the ash impoundment; therefore, the boron and sulfate observed in MW-14 are migrating east, with the general direction of groundwater flow, and discharging with groundwater to the Wabash river.

2.5 Exposure Pathways (Groundwater, Soil, Surface Water)

There are no groundwater supply wells, other than the plant wells, between Pond D and the Wabash River, which is the ultimate receptor of groundwater impacted by leachate from Pond D. The plant wells and two irrigation wells that are southeast of Pond D are completed in the deep alluvial aquifer in the Wabash River valley, which is overlain by less permeable silt and clay sediments.

As documented previously, groundwater in the shallow upland sand and in the silt unit downgradient of Pond D have elevated boron and sulfate concentrations and therefore represent an exposure pathway; however, these formations are not utilized for water supply.

The deep alluvial aquifer is utilized as a drinking water supply by the city of Hutsonville, approximately 1 mile to the south. However, groundwater flow in this aquifer is east toward the Wabash River (Figures 2-2, 2-3, and 2-4). As a result, there are no potable water supply wells, other than the two plant wells, situated between Pond D and the discharge point for groundwater (the Wabash River). The plant wells

have low boron and sulfate concentrations and do not show evidence of impacts from Pond D (Table 2-6b).

The exposed ash in Pond D also represents a direct contact exposure pathway, although access to this area is controlled by a fence around the plant, so the potential risk is low. As stated in Section 1.3, final closure of Pond D will be in accordance with 35 IAC Part 811, and will include a final cover system that meets the requirements of Part 811 or an adjusted standard approved by the Illinois Pollution Control Board (PCB). The cover will eliminate the direct contact pathway.

3 IDENTIFICATION OF LEACHATE MANAGEMENT AND FINAL COVER ALTERNATIVES

3.1 Identification of Alternatives Overview

Consistent with the requirements of 35 IAC Sections 811.324 and 811.325, alternatives designed to achieve closure for Pond D were identified to: 1) be protective of human health and the environment; 2) address identified parameters of concern and exposure pathways (Section 2.5); and 3) achieve the Closure Objectives stated in Section 1.3 of this report as summarized below:

- Manage groundwater quality to meet the requirements of Section 811.320; and
- Construct a final cover system that meets the requirements of Part 811 or an adjusted standard approved by the Illinois Pollution Control Board (PCB).

The Closure Objectives were selected to facilitate an alternatives analysis that meets regulatory requirements and adequately protects human health and the environment.

Alternatives that potentially meet the Closure Objectives are divided into two distinct categories and presented in Table 3-1:

- Leachate Management and Deep Alluvial Aquifer Source Control Alternatives; and
- Final Cover Alternatives.

Additionally, Surface Water Management Alternatives have been incorporated with the alternatives evaluation as they will be a critical component of any final cover alternative selected for the site. General surface water management approaches consist of:

- Routing surface water to the existing catch basin for collection in the drainage collection pond (Pond C) and eventual discharge to the Wabash River;
- Routing surface water via overland flow to the Wabash River; or
- A combination of these two approaches.

3.2 Leachate Management and Deep Alluvial Aquifer Source Control Alternatives

3.2.1 Selection of Alternatives for Initial Screening

Nine leachate management and deep alluvial aquifer source control alternatives were selected for initial evaluation consisting of the following:

- Site monitoring with no leachate collection (Leachate Management Alternative);
- Three variations of groundwater extraction leachate collection alternatives (Leachate Management Alternative);
- Source control for the deep alluvial aquifer via groundwater extraction (Source Control of Deep Alluvial Aquifer);
- Ash stabilization (Leachate Management Alternative);
- Ash removal and disposal, recycling at an off-site facility, or beneficial reuse (Leachate Management Alternative);
- Ash impoundment reconstruction (Leachate Management Alternative); and
- Containment using a low-permeability barrier wall (Leachate Management Alternative and Source Control of Deep Alluvial Aquifer).

These leachate management alternatives were initially selected from a broad range of available technologies based on their use at similar sites and their potential to meet the Closure Objectives.

3.2.2 Site Monitoring with No Leachate Collection

This alternative consists of a groundwater monitoring program consistent with the requirements of 35 IAC 811.319. No active leachate collection would be performed as a part of this Leachate Management Alternative. Establishing a groundwater monitoring program will be required as a component of each Leachate Management Alternative discussed below; therefore, costs for site monitoring have not been separately evaluated and will be included as part of the detailed analysis of leachate management and final cover alternatives (Section 5).

3.2.3 Groundwater Extraction - Leachate Collection Alternatives

Groundwater extraction alternatives include wells or drains, downgradient of Pond D, to capture groundwater impacted by ash leachate:

- Shallow Groundwater Extraction Wells Combined with an Interceptor Drain/Trench: This Leachate Management Alternative would consist of a network of vertical groundwater extraction wells designed to collect impacted groundwater from the shallow silt and clay unit east of Pond D, and a drain/trench south of Pond D. However, this alternative would be difficult to effectively and efficiently implement because the impacted silt unit east of Pond D has low hydraulic conductivity and the shallow sand south of Pond D is thin, and therefore has low transmissivity.
- Interceptor Drain/Trench: This Leachate Management Alternative would consist of a groundwater interceptor drain/trench along the entire east and south perimeters of Pond D. In the lowland along the east and south perimeter, the interceptor drain/trench would extract groundwater within the silt and clay unit. In the upland area along the south perimeter, the interceptor drain/trench would capture impacted groundwater above the bedrock surface.
- Horizontal Groundwater Extraction Wells Combined with Interceptor Drain/Trench: This Leachate Management Alternative would consist of a network of horizontal groundwater extraction wells designed to capture impacted groundwater along the east perimeter of Pond D. The horizontal wells could be designed to target groundwater impacted by leachate in the shallow silt and clay. Along the south perimeter, an interceptor drain/trench would be designed to capture impacted groundwater in the lowland silt/clay and upland above the bedrock surface.

For each of these Leachate Management Alternatives, collected groundwater would be directly discharged to the drainage collection pond (Pond C) and/or the interim pond (Pond B) for management through the plant's sluice water system and eventual discharge to the Wabash River via the existing NPDES permit.

3.2.4 Source Control of the Deep Alluvial Aquifer

Containment of impacts to the deep alluvial aquifer would be achieved by groundwater extraction through vertical wells located downgradient of Pond D along the southeast corner. As with the Leachate Management Alternatives presented above, groundwater collected as part of this alternative would be directly discharged to the drainage collection pond (Pond C) and/or the interim pond (Pond B) for management through the plant's sluice water system and eventual discharge to the Wabash River via the existing NPDES permit.

Other in-situ alternatives were not considered for source control of the deep alluvial aquifer because insitu technologies have not been identified for the primary parameters of concern (boron and sulfate). Containment utilizing a low-permeability barrier wall is presented below in Section 3.2.8.

3.2.5 Ash Stabilization

Ash stabilization is a technology designed to micro-encapsulate the ash in a cement-like matrix (monolith) to minimize the rate of groundwater infiltration and leaching of ash constituents to groundwater. Ash fill is stabilized and solidified using one of several reagents delivered either via soil mixing or jet grouting technology. Once the ash is stabilized, leachate volume is greatly reduced, potentially eliminating the need for active leachate collection.

Soil mixing utilizes large diameter augers (5 to 12 feet in diameter) that mechanically mix soils with a stabilizing reagent carried by drilling fluid. Jet grouting utilizes a small drill rig to advance a drill bit into the ash, through which grout is pumped under high pressure. As the drill steel is rotated and slowly raised, a cylindrical grout column is created. The grout injection produces grout columns ranging from approximately 2 to 5 feet in diameter. A key disadvantage of this technology is maintaining the continuity and integrity of the grout column. Discontinuities or irregularities in subsurface conditions can lead to irregularity in grout column diameter. Typically, conservative overlapping is performed to achieve uniform coverage.

3.2.6 Ash Removal and Disposal, Recycling at an Off-Site Facility, or Beneficial Reuse

Removal of ash from Pond D eliminates the source of ash leachate impacting groundwater at the site. Removal of ash requires excavation of a considerable thickness (20 to 30 feet) of ash. Extensive site dewatering would be required throughout the course of the project. For purposes of evaluating this alternative, partial removal (i.e. removal of saturated ash only) was compared to removal of all ash from the unlined impoundment. Key design and technical considerations for excavation include:

- Excavated material would be disposed off-site.
- For the partial removal alternative, following removal of saturated ash, a capillary break would be created by placing a relatively free draining material such as a self-compacting gravel at and above the groundwater interface. This material prevents ash saturation due to capillary rise from the underlying water table and also provides a buffer to prevent resaturation of the ash if groundwater elevation increased in the future. Above the capillary break, excavated ash would be placed as backfill to grade. Above the ash

IDENTIFICATION OF LEACHATE MANAGEMENT AND FINAL COVER ALTERNATIVES

backfill, an engineered cover would be constructed to minimize surface water infiltration through the unsaturated ash.

Extensive engineering controls that could include water misting would be required for managing fugitive dust emissions.

3.2.7 Ash Impoundment Reconstruction

Reconstruction of Pond D is identified as a Leachate Management Alternative since the source of ash leachate would be removed. Reconstruction of this impoundment would require extensive excavation and relocation or off-site disposal of all ash. The impoundment would then be reconstructed as a new unit designed to:

- Separate ash from the water table through addition of clean fill to raise the base of the impoundment above the water table; and
- Reduce or eliminate ash leachate generation by retrofitting the impoundment with a low permeability liner and prevent downgradient migration of ash constituents to groundwater.

Upon completion of impoundment reconstruction, removed ash could either be replaced or the unit could be operated as a new ash impoundment. Final reconstruction would be completed once the reconstructed impoundment reached capacity and a final cover was installed (as discussed in Section 3.3).

3.2.8 Containment Using a Low-Permeability Barrier Wall

Installation of a low-permeability vertical barrier wall is identified as a Leachate Management and Deep Alluvial Aquifer Source Control Alternative. The Leachate Management Alternative would be designed to prevent lateral migration of ash leachate via groundwater to the Wabash River. The Deep Alluvial Aquifer Source Control Alternative would be designed to contain or impede the horizontal flow of impacted groundwater within the deep alluvial aquifer.

Construction of a vertical barrier would require keying into a low-permeability geologic formation such as shale bedrock or clay. Two basic wall configurations were considered:

Partially Encapsulating Wall: A typical layout for this type of barrier consists of a wall along the east and south (downgradient) sides of the impoundment. The barrier would be completed with an interior hydraulic gradient control system utilizing interceptor trenches or extraction wells within the impoundment and upgradient of the wall. The hydraulic gradient controls would prevent hydraulic mounding by maintaining an inward gradient.

¹³⁷⁵ Alternatives Analysis Report-Final

- IDENTIFICATION OF LEACHATE MANAGEMENT AND FINAL COVER ALTERNATIVES
- Fully Encapsulating Wall: This type of barrier consists of a wall surrounding the entire perimeter of the ash impoundment to fully encapsulate the saturated ash zone and deflect upgradient groundwater flow around the impoundment. Internal hydraulic controls may be required to manage groundwater fluctuations that could potentially compromise containment integrity.

Several vertical barrier wall technologies are available including sealed sheet piling, cement-bentonite slurry or soil-cement slurry, and jet grouting. Each of these technologies has the capability to create a barrier with hydraulic conductivity approaching 1×10^{-7} cm/sec with proper design and QA/QC during installation. However, without a competent low permeability formation in which to key the barrier wall, proper containment cannot be achieved.

3.3 Final Cover Alternatives

Four different final cover alternatives were selected for initial evaluation:

- Geosynthetic final cover (30 mil PVC);
- Compacted clay final cover;
- Layered earthen final cover; and
- Pozzolanic fly ash final cover.

The first two alternatives are consistent with the requirements of 35 IAC Section 811.314. These cover systems consist of a low permeability layer, either a geosynthetic membrane (e.g. 30-mil PVC) or 3 feet of compacted clay, followed by a 3-foot thick final protective layer designed to support vegetation and protect the low permeability layer.

The third alternative, a layered earthen final cover, reflects a simplified approach to traditionally accepted landfill cover design practices and would require an adjusted standard from the Illinois PCB to implement, as the cover does not meet the requirements of Section 811.314. Earthen cover designs have been used to achieve closure at similar fly ash management facilities in Illinois. Instead of relying on low permeability clay or geosynthetic covers, such as PVC, the design of a layered earthen cover incorporates the use of high permeability sand and/or gravel layers to create a capillary break that reduces downward infiltration of water. The capillary break causes retention of water in the rooting zone, which increases transpiration to the atmosphere relative to covers without capillary breaks, yet minimizes saturation in the rooting zone. If the rooting zone becomes saturated, the high permeability sand and/or gravel layer(s)

promote rapid lateral drainage and continue to limit infiltration. However, migration of water to this drainage layer would only occur after the retention capacity of the rooting zone is reached.

Given the humid climate in this area, the earthen cover will not be as effective as a compacted clay or PVC cover in limiting infiltration into the ash; however, a net reduction in annual infiltration can be achieved. Additionally, the earthen cover may prove an acceptable alternative because it provides a direct contact barrier, meets the requirements of a final protective layer, and because infiltration represents a small fraction of ash constituents that leach to groundwater in Pond D—the majority of ash constituents present in the groundwater leach from ash situated below the water table via groundwater throughflow. Construction of an earthen cover is a lower cost approach since no geosynthetic materials are used, and it relies on locally available materials.

The fourth and final cover alternative reflects an innovative approach to cover design. Fly ash from an on-site source (Pond A), would be collected and blended with a stabilizing reagent (e.g. quick lime, Portland cement, class C fly ash) to create a cement-like monolithic cover to minimize the rate of groundwater infiltration and leaching of ash constituents to groundwater. Consistent with the requirements of Section 811.314, a 3-foot thick low permeability layer would be constructed from the pozzolanic fly ash mixture followed by a 3-foot thick earthen protective layer. With adequate mixture design and quality control, a low-permeability cover with properties approaching those of a geosynthetic or compacted clay cover can be achieved.

Construction of a pozzolanic fly ash cover would require an adjusted standard from the Illinois PCB to implement; however, regulatory precedent exists for a similar cover technology. Part 816 provides alternative standards for final cover systems at coal ash management facilities using a similar process to stabilize flue gas desulfurization (FGD) sludges with fly ash (Poz-O-TecTM process). It is likely that construction of a pozzolanic fly ash final cover could meet or exceed the alternative standards for strength and approach the alternative standards for permeability outlined in Section 816.530 for testing of the final cover constructed with the Poz-O-Tec process. Construction of a pozzolanic fly ash cover would likely reflect the highest cost final cover approach; however, the high cost may be offset by the creation of additional capacity for fly ash in the lined ash impoundment (Pond A).

3.4 Surface Water Management Alternatives

Three surface water management alternatives were selected for initial evaluation consisting of the following:

1375 Alternatives Analysis Report-Final

- Route surface water east towards the Wabash River;
- Route surface water west towards the drainage collection pond (Pond C); and
- Route surface water east and west, toward the Wabash River and the drainage collection pond (Pond C).

Diverting all surface water to the Wabash River would require the most fill, while combining surface water drainage to either the Wabash River or Pond C would require the least fill. A box culvert has already been constructed to route surface water from Pond D to Pond C. For purposes of estimating fill volumes to construct the surface water management alternatives, a minimum 5% slope has been assumed to provide adequate drainage and prevent standing water from accumulating in depressions on the final impoundment surface.

A fourth surface water management alternative, creation of a detention pond and dewatering sump for diversion to Pond C, was not considered for the following reasons:

- Section 811.322 prohibits standing water anywhere on a solid waste unit-an adjusted standard from the Illinois PCB would be required to construct a detention basin on the unlined ash impoundment; and
- Use of a detention basin would likely negate the opportunity to receive an adjusted standard for use of an earthen or pozzolanic final cover system.

3.5 Initial Screening Criteria and Results

Initial screening criteria for assessing leachate management, final cover, and surface water management alternatives consist of the following:

- Construction / Implementation Feasibility: Construction feasibility refers to the ability to build the system given site-specific conditions. Implementation feasibility refers to the ability of this alternative to meet technical factors such as appropriateness or suitability, and availability of the technology given site specific constraints and geographic location; and administrative factors such as local and state permitting requirements and regulatory reviews for approval.
- Effectiveness: Effectiveness refers to three criteria consisting of: 1) the extent to which the alternative protects human health and the environment; 2) reduction in contaminant levels to meet Section 811.320 groundwater quality standards; and 3) the extent to which the alternative has been demonstrated at other sites.
- <u>Cost</u>: Costs for the purpose of initial screening refer to relative cost ranges for each of the alternatives, and include utilization of available published cost data from similar projects, vendor data, and engineering judgment. As such, costs are for general

comparative purposes, and are not used singly as a screening tool unless substantial cost differentials would immediately preclude the technology from further consideration.

Of the three initial screening criteria identified above, the most crucial is construction / implementation feasibility. If a technology failed this criterion, then it was not considered for further evaluation. Therefore, the criteria of effectiveness and cost are secondary unless substantial concerns in either of the secondary criteria were identified that would clearly eliminate the alternative (i.e. same feasibility and effectiveness with significantly higher costs).

The results and recommendations of the initial screening are listed in the last column of Table 3-1. The rough cost summaries for each of the alternatives are provided in Appendix B. Table 3-2 provides a summary of the areal extent and volumes of ash in Pond D used for quantity estimation in the rough cost summaries. Table 3-3 provides a material balance analysis for each of the final cover alternatives that explains how each source of fill available on site will be utilized within the final cover alternative. The alternatives selected for further evaluation and modeling consist of the following:

Leachate Management Alternatives

- Site monitoring with no leachate collection.
- Groundwater extraction combined with interceptor drain/trench.
- Interceptor drain/trench.

Source Control in the Deep Alluvial Aquifer via Groundwater Extraction

Final Cover Alternatives

- Geosynthetic final cover.
- Earthen final cover.
- Pozzolanic fly ash final cover.

Surface Water Management Alternatives

Route surface water east and west towards the Wabash River and the drainage collection pond (Pond C).

3.6 Treatability Study for a Pozzolanic Fly Ash Final Cover

The results of the initial screening included the pozzolanic fly ash final cover alternative for further evaluation and modeling. If the pozzolanic cover can provide similar performance to traditional final cover designs (e.g. compacted clay and/or geosynthetic), the Hutsonville Power Station may have the opportunity to beneficially incorporate fly ash from Pond A, with the added benefit of renewing capacity in Pond A. The treatability study was performed to evaluate the technical feasibility of constructing a pozzolanic fly ash cover from Pond A. Specific objectives included:

- The ability to approach or meet the alternative standards for strength and permeability as outlined in Part 816 for a similar regulatory approved final cover technology: the Poz-O-Tec process;
- The range of admixtures that can be successfully mixed with Pond A fly ash to construct a pozzolanic fly ash final cover; and
- The best mix design for a pozzolanic fly ash cover that provides the best balance of constructability and performance with respect to the Part 816 standards and cost.

VFL Technology Corporation (VFL) was selected to perform the treatability study. The results of the treatability study are included as Appendix C-1; Conceptual Development of a Pozzolanic Cap for Closure of Basin D and the Hutsonville Power Station (Treatability Study).

Specific details regarding the study including geotechnical investigation, raw materials characterization, mix design preparation, mix design performance testing, and extrapolation to full-scale operations are included in the Treatability Study. Reagents that were evaluated during the study included Portland Cement, Class C fly ash, fluidized bed residue ash (FBR), quicklime, fluidized gas desulfurization scrubber sludge (FGD or filter cake), and native soils. VFL evaluated 16 mix designs, as listed in the Treatability Study – Table 3.

Specific conclusions provided in the study (Section 2.0, Treatability Study) indicate that construction of a pozzolanic fly ash final cover system using ash from Pond A is feasible from a geotechnical, treatability, and performance based stance. Specifically, VFL recommended five mix designs that provide the best performance and applicability for construction under field conditions that included:

- Mix Designs 1 and 2 (Pond A fly ash and cement);
- Mix Designs 9 and 10 (Pond A fly ash, on-site soil, and cement); and
- Mix Design 14 (Pond A fly ash, FGD filter cake, and cement).

IDENTIFICATION OF LEACHATE MANAGEMENT AND FINAL COVER ALTERNATIVES

The performance of each of these mix designs with respect to performance goals listed above are provided in Table 3-4. The following pertinent observations were developed from a comparison of each recommended mix design to the performance goals:

- The permeability results for each mix design do not meet or exceed the performance goal of 1×10^{-7} cm/sec;
- The unconfined compressive strength (UCS) (at 84 days) for each mix design exceeds the performance goal of 150 psi;
- Each mix design appears to be constructable in the field; although several constructability concerns were noted for Mix Design 14. Specifically, the rapid strength gain and ultimate UCS of Mix Design 14 (Figure 2, Treatability Study) could present construction challenges. In addition, VFL specifically noted (Section 4.4, Treatability Study) that FGD sludge utilized in Mix Design 14 can be difficult to accurately feed into a portable processing system and adequately mix with the fly ash and other reagents as the material has a tendency to adhere to the sides of the feed hoppers; and
- Three of the five recommended mix designs (Mix Designs 1, 9 and 14) were tested for leaching performance (Table 4, Treatability Study). The results of the TCLP testing of RCRA metals for each mix design indicated that leachate concentrations did not exceed the Groundwater Quality Standards for Class I: Potable Resource Groundwater with the exception of cadmium, detected slightly above the Class I standard at 0.01 mg/L for Mix Design 9. This concentration is well below the Groundwater Quality Standards for Class II: General Resource Groundwater for cadmium at 0.05 mg/L.

Furthermore, VFL expressed a concern with the chemical and physical variability of FGD sludge that could significantly alter the performance characteristics of mix designs that utilize this reagent (Mix Design 14). Based on the results of the study and the comparison with the performance goals, the following considerations have been developed for possible full-scale implementation of a pozzolanic fly ash final cover system for Pond D:

- Low permeability conditions can be achieved that will minimize concerns for continuing impacts to groundwater related to infiltration of surface water to the ash in Pond D;
- The range of available compressive strengths will provide suitable conditions for construction of a pozzolanic final cover;
- Leach testing indicates that the processing of ash from Pond A for pozzolanic final cover materials for Pond D will not result in leachate concentrations that exceed Class I Groundwater Quality Standards;
- A range of mix designs will support effective construction of a pozzolanic final cover system relative to site-specific design requirements; and

¹³⁷⁵ Alternatives Analysis Report-Final

IDENTIFICATION OF LEACHATE MANAGEMENT AND FINAL COVER ALTERNATIVES

Mix Design 14 is not recommended for the pozzolanic final cover system due to field constructability concerns and potential chemical and physical variability concerns noted by VFL.

4 MODELING AND EVALUATION OF SELECTED ALTERNATIVES

4.1 Purpose

The purpose of the modeling was to predict the effect of closure alternatives selected for further evaluation in Section 3. The modeling was performed using the calibrated groundwater flow and transport model developed for this site, which was documented in the NRT report *Groundwater Model Evaluation of Impoundment Closure Options* (January 2000). The calibrated model from the January 2000 report was utilized as the starting point for this modeling⁶, which included variation on five final cover options and four groundwater extraction variations as summarized in Table 4-1.

The prediction modeling was performed with the intent to represent implementation of the final cover and leachate management alternative in 2004. Due to subsequent findings of low level ash impacts at monitoring well MW-14 (Section 2.4) and subsequent installation of off-site monitoring wells (Section 2.2), the assumed timeframe for implementation of the closure alternatives has passed. The net effect from the model perspective is that the time between dewatering of the impoundment (2001) and estimated implementation of the final cover and leachate management alternative (2006 to 2007) will increase. This increase will have no effect on the predictive model comparison and results; therefore, for purposes of modeling and evaluation of selected alternatives, the model presented in this report remains valid and has not been redone.

The alternatives were modeled in the following order:

- Final cover alternatives.
- Final cover alternatives combined with leachate management alternatives.

⁶ In other words, the initial heads and concentrations used in this model were the final calibrated heads and concentrations for the steady-state portion of the model calibrated in 2000. That steady state model was calibrated to represent conditions through the end of 2000, and assumed that Pond D was in service until the end of 2000. Therefore, prediction modeling performed here begins with dewatering beginning in 2001, and assumes that the final cover and leachate management alternatives can first be applied in 2004.

¹³⁷⁵ Alternatives Analysis Report-Final

4.2 Model Approach

Transport of boron was modeled because it was the parameter calibrated in the 2000 model. Boron was modeled in 2000 because it is an indicator parameter for coal ash leachate and it is mobile in groundwater.

Three model codes were used to simulate groundwater flow and contaminant transport:

- Post-closure leachate percolation was modeled using the Hydrologic Evaluation of Landfill Performance (HELP) model;
- Groundwater flow was modeled in three dimensions using MODFLOW (The HELP model provided leachate percolation rates for input to MODFLOW); and
- Contaminant transport was modeled in three dimensions using MT3DMS (MODFLOW calculated the flow field that MT3DMS used in the contaminant transport calculations).

The general background and use of the HELP, MODFLOW, and MT3DMS codes are described in detail in the 2000 model report. Specific parameter changes from the 2000 modeling are discussed below.

4.2.1 HELP Modeling

HELP (Version 3.07; Schroeder et. al, 1994) was used to estimate percolation from the impoundment for five cover scenarios. The hydrologic data required by and entered into HELP are listed in Appendix D, Table D-1 and described in the following paragraphs. A disk containing model files is attached to the back of the report.

- CO-1: 3-foot Earth;
- CO-2: 3-foot Earth over geosynthetic layer;
- CO-3a: 3-foot Earth layer over 3-foot pozzolanic layer with K= 1x10-7 cm/sec;
- CO-3b: 3-foot Earth layer over 3-foot pozzolanic layer with K= 1x10-6 cm/sec; and
- CO-3c: 3-foot Earth layer over 3-foot pozzolanic layer with K= 1x10-5 cm/sec.

Scenario CO-1 is the native soil cap scenario from the 2000 modeling. The other scenarios used in this modeling were developed by adding layers to represent PVC, compacted clay, or the pozzolanic layer.

Each cover scenario was simulated assuming the ash was uncapped with no runoff for three years (2001-2003), while the impoundment dewatered and the closure alternative was enacted. Scenario-specific

changes were simulated beginning the fourth year (2004) and through the end of the simulation (2025). A 25-year simulation (2001 through 2025) was sufficient for the system to reach equilibrium after enactment of the closure scenario.

4.2.2 MODFLOW/MT3DMS

Percolation rates obtained from HELP were utilized as recharge rates for the Pond D ash cells in MODFLOW. Concentration values for the ash cells were the same as in the 2000 model, except for the period after the cap was installed (2004-2025), when concentration for the ponded portion of Pond D was increased from 5 to 20 mg/L. This change is based on NRT's experience at other impoundments, and assumes that leachate concentrations will increase after the pond is removed. The reasons for this expected increase are associated with removal of the pond water, which has typically has lower concentration than the porewater in the ash, and with removal of the hydraulic head imparted on the impoundment by the pond water when slows percolation rates through the coal ash and increases contact time.

The 2000 model included recharge terms to simulate the former ash laydown area. However, this feature was removed when Ponds B and C were constructed in 2001. This model represented removal of the ash laydown area and replacement with Ponds B and C by changing recharge rates and concentrations in this area to the values used for Pond A (the lined ash impoundment).

4.2.3 Criteria for Evaluation of Modeling Results

Two general criteria were identified for evaluation of modeling results as a measure of the scenario's effectiveness:

- Effectiveness Criteria No. 1: Compliance with the health-based Class I Groundwater Quality Standard for boron (2 mg/L) at the monitoring wells surrounding Pond D; and
- Effectiveness Criteria No. 2: The time frame, in years, in which the modeling scenario achieves the Class I Standard for boron at the monitoring wells.

4.2.4 Simulation of Final Cover and Leachate Management Alternatives

The final cover alternatives described in Section 4.2.1 were first modeled individually. Then two representative cover scenarios were modeled with the leachate collection alternatives. The leachate

collection alternatives were simulated in combination with final cover alternatives, rather than individually, because the "no cover" alternative is not being considered for this facility.

For purposes of the modeling evaluation, the leachate collection alternatives were assigned the following designations, referred to as leachate extraction options (LEO):

- LEO-1: Shallow groundwater extraction wells (east) combined with an interceptor drain/trench (south);
- LEO-2: Interceptor drain/trench (east and south);
- LEO-3: Interceptor drain/trench (south only); and
- LEO-4: Interceptor drain/trench (east and south), 700 feet shorter than in LEO-2 along the east alignment.

In addition, two drain/trench depths were modeled, as designated by "a" or "b" for shallow and deep, respectively. The difference between the shallow and deep trench designs is an approximate 3 foot increase in trench depth. The trench depth was varied to evaluate the design depth necessary to effectively collect groundwater affected by ash leachate. LEO-4 was simulated because tiebacks associated with a retaining wall on the Wabash River would interfere with trench installation along the northern portion of Pond D.

Groundwater extraction scenarios (drains and extraction wells) are summarized on Table 4-1. Model layout for the drains and extraction wells are shown on Appendix D, Figures D-1 and D-2.

4.2.5 Simulation of Deep Alluvial Aquifer Source Control Alternative

Groundwater extraction from the deep alluvial aquifer was not explicitly modeled because the area of 811.320 exceedances is limited to one monitoring well within the zone of attenuation, and because boron concentrations are below the health-based Class I Groundwater Quality Standard (2 mg/L); therefore, this aquifer already meets the effectiveness criteria.

4.3 Modeling Results and Recommendations for Alternative Assembly

The groundwater transport modeling results are summarized in Table 4-2 based upon the performance of each model scenario with respect to the two effectiveness criteria identified above in Section 4.2.3. In

addition, graphical results showing predicted concentration trends over time are included in Appendix D, Figures D-4 and D-5.

4.3.1 Modeling Results: Final Cover Alternatives

The five cap scenarios modeled using HELP fell into two groups. Scenarios CO-2 and CO-3a had predicted leachate percolation rates that averaged approximately 2 inches per year once dewatering was completed. The other scenarios averaged slightly less than 8 inches per year after dewatering (Figure D-3).

MODFLOW simulations of flow and transport for the five cap scenarios did not identify a final cover that significantly reduced the concentration of boron at the east monitoring wells (MW-7 and MW-8) over time (Figure D-4). Furthermore, the cover scenarios yielded similar results at the downgradient monitoring wells. The only discernable difference was observed at MW-8, where the predicted boron concentration increase for scenarios CO-2 and CO-3a was slightly lower than for the other scenarios. Similar to the 2000 model, this modeling suggests that the difference between cover scenarios is insignificant compared to the effect of dewatering Pond D, and to the effect that leaching of ash below the water table has on groundwater quality east of Pond D.

4.3.2 Modeling Results: Final Cover Alternatives Combined with Leachate Management Alternatives

The cover scenarios produced two groups of results; therefore, two representative cover scenarios were modeled in combination with the leachate management alternatives. Cover CO-2, the synthetic cover alternative, was modeled to represent the low percolation cover scenarios, and cover CO-3c, the pozzolanic cover with hydraulic conductivity of 1 x 10^{-5} cm/s, was modeled to represent the high percolation cover scenarios.

The modeled leachate collection alternatives had varying effects on predicted groundwater quality (Table 4-2; Figure D-5). In general, each of the leachate extraction option (LEO) scenarios met the evaluation criteria at each of the south and east downgradient monitoring wells with the exception of LEO-3 (interceptor drain/trench, south alignment only), where predicted concentrations remained elevated at monitoring wells MW-7 and MW-8. Other observations from the model results:

Placement of extraction wells within model layer 2 (silty-clay layer) for LEO-1 resulted in dry cells; therefore, the wells were simulated in layer 3 (deep alluvial aquifer), as discussed above in Section 4.2.4, where they had to be modeled at withdrawal rates sufficient to draw flow from layer 2 to layer 3.

- Each LEO scenario met Criteria No. 1 for each monitoring well with the aforementioned exception;
- Monitoring well MW-6 went dry within four years for each LEO scenario evaluated;
- The interceptor drain/trench scenarios (LEO-2 and LEO-4 scenarios) met Criteria No. 2 faster than the groundwater extraction (east) combined with an interceptor drain/trench scenario (LEO-1 scenarios);
- The differences between the "shallow" and "deep" interceptor drain/trench scenarios fall within the realm of model uncertainty-no distinct advantage was observed for one or the other;
- The differences between the LEO-2 and LEO-4 scenarios also fell within the realm of model uncertainty-no distinct advantage was observed for extending the interceptor drain/trench 700 ft. further north (LEO-2 scenarios). This is not unexpected since all of the ash situated below the water table is located in the central and southern portions of Pond D; and
- There were no significant differences associated with the two final cover scenarios (CO-2 and CO-3c).

4.3.3 Recommendations for Alternatives Assembly

A key objective for groundwater transport modeling is to reduce the number of alternatives assembled for final screening and detailed evaluation. A large number of assembled alternatives renders detailed analysis in the final stage of the evaluation cumbersome and less meaningful. Based on the groundwater transport modeling, the following modeling scenarios were eliminated from further evaluation:

- LEO-1, all scenarios: LEO-1 combinations are not as effective as LEO-2 and LEO-4 combinations (Effectiveness Criteria No. 2, time frame);
- LEO-2, all scenarios: LEO-2 combinations (extending the interceptor drain/trench 700 ft. further north) do not provide significantly better effectiveness (Effectiveness Criteria No. 2, time frame) than LEO-4 scenarios at increased capital cost; and
- All "deep" interceptor drain/trench scenarios: the "deep" interceptor drain/trench does not provide significantly better effectiveness (Effectiveness Criteria No. 2, time frame) at increased capital cost versus shallow trench scenarios.

The remaining modeling scenarios were carried through for alternative assembly. Although the LEO-3 scenarios did not meet the effectiveness criteria along the east impoundment boundary between Pond D and the Wabash River, two of the LEO-3 scenarios were carried through for alternative assembly based

on their ability to meet the effectiveness criteria along the south impoundment boundary and prevent offsite migration of groundwater affected by ash leachate. None of the final cover alternatives were eliminated at this time since each has equivalent performance and each offers a unique advantage that will be further evaluated in Section 5.

5 ASSEMBLY AND DETAILED ANALYSIS OF CLOSURE ALTERNATIVES

5.1 Assembly and Selection Rationale

Five final cover alternatives and four combinations of final cover and leachate management alternatives, listed in Table 4-2, were carried through the groundwater transport modeling evaluation for consideration as closure alternatives for detailed analysis. In addition, the modeling results discussed in Section 4 indicate that substitution of final cover alternative CO-3a for CO-2 and substitution of CO-1 for CO-3c would be appropriate for the combinations of final cover and leachate management alternatives as CO-3a and CO-1 provide equivalent effectiveness as CO-2 and CO-3c, respectively. Three of the alternatives carried through and one alternative that substitutes CO-1 for CO-3c were selected for detailed analysis as follows:

- Closure Alternative No. 1: Select one alternative that substantially meets the leachate collection and cap design requirements of 35 IAC Parts 811 and 814. Based on this selection criterion, combination CO-2, LEOa-4: Geosynthetic Final Cover with East and South Interceptor Drain/Trench was selected (700 feet shorter along east alignment). This closure alternative adheres to the Section 811.314 requirements for a final cover system, and implements leachate collection along the east and south boundaries of Pond D, and groundwater extraction in the deep alluvial aquifer, to meet the requirements for meeting applicable groundwater quality standards at the edge of the "zone of attenuation" as defined in Section 811.320(c).
- Closure Alternative No. 2: Select one alternative that meets the "effectiveness criteria" (Section 4.2.3) with adjusted standards and includes leachate collection. Based on this selection criterion, combination CO-1, LEOa-3: Earthen Final Cover with South Interceptor Drain/Trench was selected. Although this closure alternative was not explicitly modeled, the results of the final cover alternatives modeling (as explained above) indicate that this alternative combination will have equivalent effectiveness as CO-3c, LEOa-3 listed in Table 4-2. This closure alternative balances lower cost with leachate collection designed to prevent off-site migration to the south. An earthen final cover would require an adjusted standard to meet the Section 811.314 final cover requirements. Leachate collection along the south impoundment boundary would adhere to the requirements of Section 811.320 at the south property line; however, an adjusted standard would be needed to allow affected groundwater to exceed the Section 811.320 applicable background concentrations and Class I Groundwater Quality Standards beyond the zone of attenuation between the east edge of Pond D and the Wabash River.
- Closure Alternative No. 3: Select one alternative that represents the lowest cost alternative and meets the "effectiveness criteria" (Section 4.2.3) with adjusted standards

and no leachate collection. Based on this selection criterion, final cover alternative *CO-1: Earthen Final Cover* was selected. This closure alternative represents the lowest cost alternative for closure of Pond D and would require adjusted standards to seek relief from several sections of Part 811 and Part 814.302(b)(1).

■ Closure Alternative No. 4: Select one alternative that meets the "effectiveness criteria" (Section 4.2.3) with adjusted standards and meets the "intent" of 35 IAC Part 811 and 814 through utilization of technology and construction techniques substantially similar to those promulgated in 35 IAC Part 816 (Alternative Standards for Coal Combustion Power Generating Facilities Waste Landfills). Based on this selection criterion, final cover alternative *CO-3c: Pozzolanic Fly Ash Final Cover* ($K \approx 1 \times 10^{-5}$ cm/sec) was selected. This closure alternative provides equivalent effectiveness as Closure Alternative No. 3 and has the added benefit of providing renewed capacity for the Pond A fly ash impoundment. This alternative would require adjusted standards to seek relief from several sections of Part 811 and Part 814.302(b)(1).

Each of the mix designs recommended by VFL for a pozzolanic fly ash final cover had lower hydraulic conductivity than the highest value used for HELP and groundwater transport modeling ($K = 1 \times 10^{-5}$ cm/sec). Since each mix design provides essentially equivalent effectiveness within the modeling performed to evaluate the alternatives, feasibility level cost data were provided by VFL to perform a cost sensitivity analysis of the recommended mix designs. The cost sensitivity analysis is provided in Table 3-4 and the feasibility-level cost data used to create the feasibility cost estimates (Appendix B) for each mix design is provided in Appendix C-2. The results of the cost sensitivity analysis indicated that Mix Design 2 for the pozzolanic fly ash final cover would be the most economical mix design to achieve the performance modeled for Closure Alternative No. 4. Therefore, costs associated with Closure Alternative No. 4 are based on Mix Design 2 for the pozzolanic fly ash final cover.

Surface water management considerations have been included for each of the selected alternatives. Since only one surface water management alternative passed the initial screening [Section 3.5, Table 3-1: Route surface water east and west towards the Wabash River and the drainage collection pond (Pond C)], costs for grade adjustment within Pond D to construct this surface water management alternative are incorporated within the final cover cost estimates. Also, proposed grading contours for this surface water management alternative are shown on Figures 5-1 through 5-3.

5.2 Detailed Analysis of Closure Alternatives

Costs for each of the closure alternatives and the alternate final cover are summarized in Table 5-1 and were compiled using the cost estimates provided in Appendix B. Detailed analysis of the three alternatives is summarized in Table 5-2 and was performed in general accordance with the criteria stipulated in Sections 811.324 and 811.325. Conceptual layouts of Closure Alternatives No. 1 through 4

are shown on Figures 5-1 through 5-3, respectively. Key conclusions from the cost comparison and detailed analysis:

- Closure Alternative No. 1 has the highest initial capital cost and overall cost for a 30-year operating and maintenance (O&M) period, based on 2003 dollars. Performance and reliability are not concerns as the remedial components consisting of a geosynthetic cover, leachate collection via an interceptor drain/trench, and groundwater extraction are demonstrated technologies that are widely available. Ease of implementation will present a significant, although manageable, challenge for operation and maintenance of the deep alluvial aquifer groundwater extraction. System reliability and effectiveness would be further enhanced by careful design, operation and maintenance. This alternative reflects the most conventional approach of the three alternatives; and likely would not require adjusted standards for leachate collection and cap design as the alternative is designed to comply with these requirements in Parts 811 and 814.
- Closure Alternative No. 2 reflects an approach that balances mid-range cost with heightened institutional requirements through the pursuit of adjusted standards. This alternative provides significant cost savings versus Alternative No. 1 in up-front capital cost and for a 30 year O&M period. Performance, effectiveness, and reliability along the south impoundment boundary are nearly equivalent to Alternative No. 1. Along the east impoundment boundary, an adjusted standard would be required to meet performance and effectiveness criteria. An adjusted standard would also be required for construction of an earthen final cover.
- Closure Alternative No. 3 does not rely on leachate collection for performance and represents the lowest cost alternative with significant savings in up-front capital and long term O&M costs. Groundwater transport modeling data suggest that an earthen cover may provide similar performance and long term effectiveness along the south property boundary as Alternatives No. 1 and 2. However, this alternative would require significant adjusted standards for construction of an earthen cover, no leachate collection, and adjusted groundwater quality standards.
- Closure Alternative No. 4 provides equivalent performance, reliability, and effectiveness as the final covers proposed for each alternative at a mid-range capital cost for final cover construction. Plant enhancements resulting from the additional capacity created for fly ash in Pond A may offset capital costs. Similar to Closure Alternative No. 3, adjusted standards would be required for no leachate collection and adjusted groundwater quality standards. In addition, an adjusted standard would be required to gain regulatory acceptance of this technology for construction of a pozzolanic fly ash cover; however, regulatory precedent does exist for similar construction of final covers (35 IAC Part 816).

5.3 Recommended Closure Strategy

Each of the four alternatives is potentially appropriate for the site with similar performance and effectiveness, and reflects a range of approaches contingent on capital expenditure and varying approval of adjusted standards with the Illinois PCB. However, Closure Alternative No. 4, Pozzolanic Fly Ash

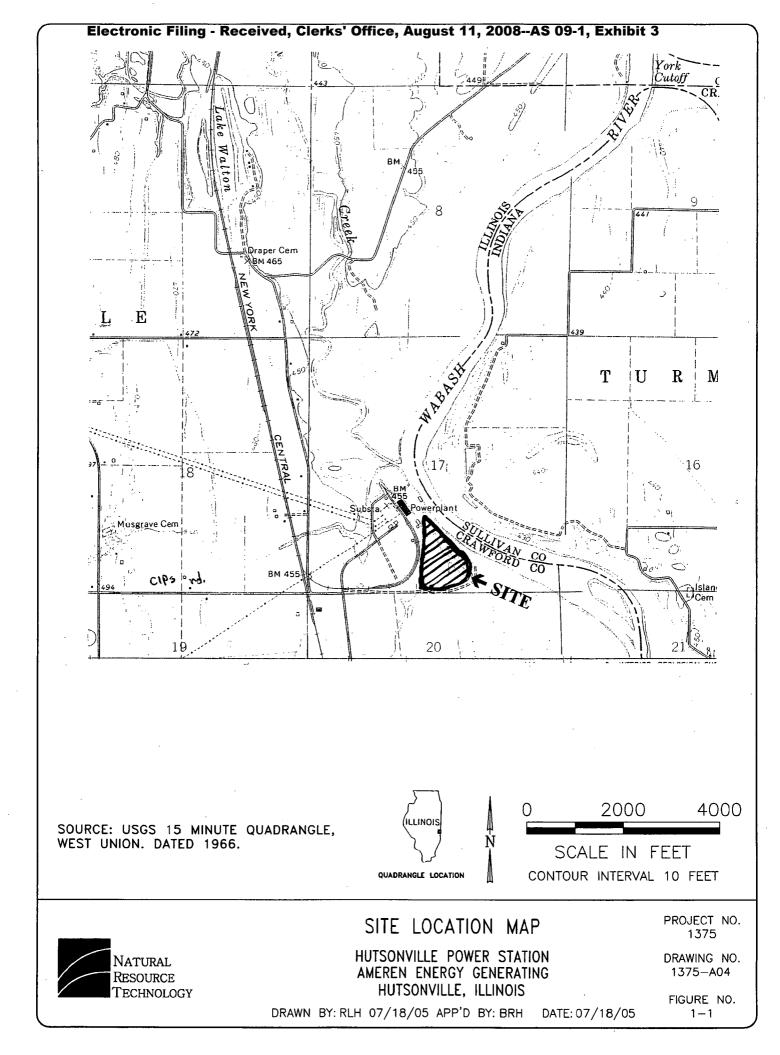
ASSEMBLY AND DETAILED ANALYSIS OF CLOSURE ALTERNATIVES

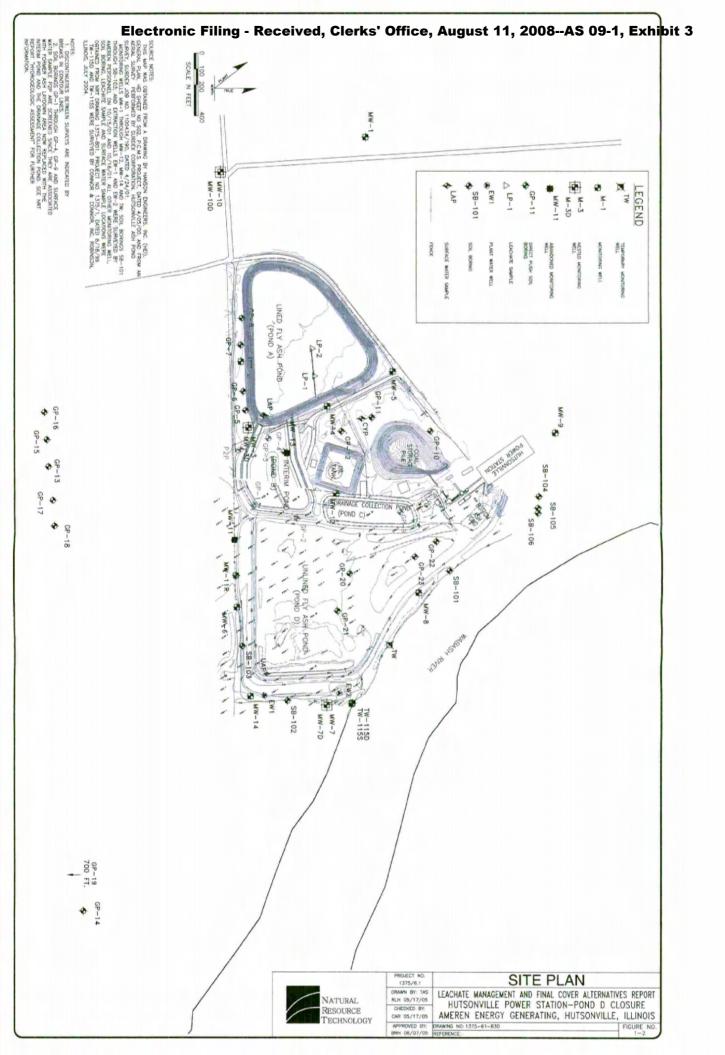
Cover, provides the optimal balance of capital expenditure and pursuit of adjusted standards for the following reasons:

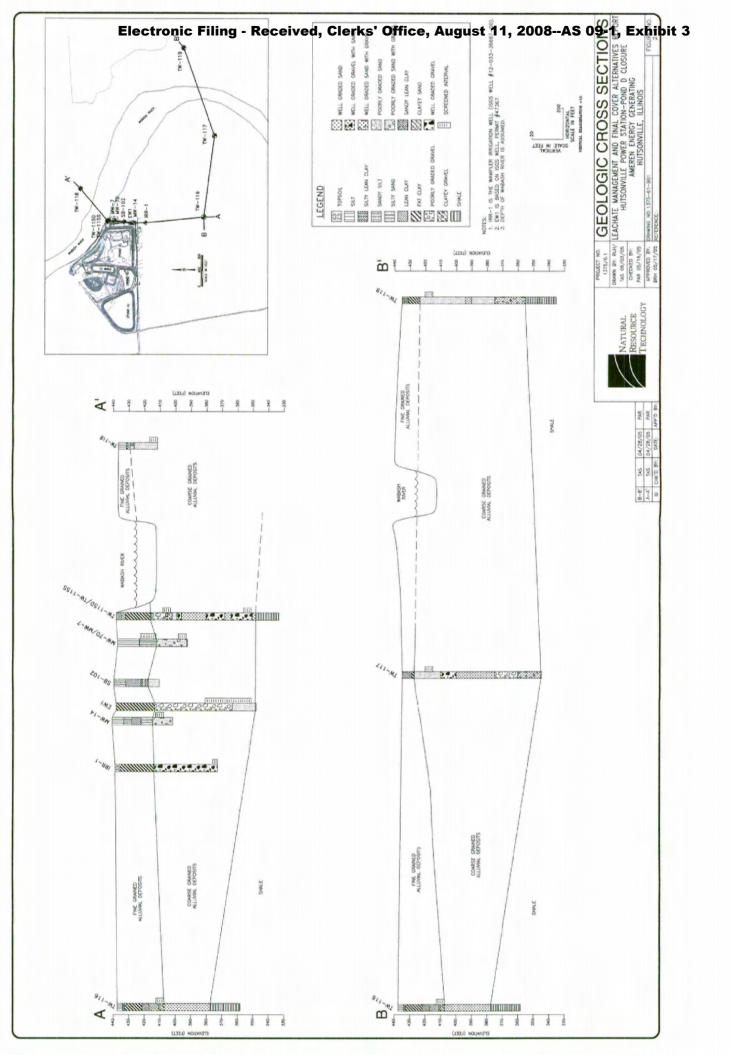
- Groundwater transport modeling indicates that a pozzolanic fly ash final cover system will have substantially similar performance and effectiveness as a cover system that meets the requirements of Section 811.314 (e.g. geosynthetic final cover).
- Groundwater transport modeling indicates that the pozzolanic fly ash final cover will achieve the health-based Class I Groundwater Quality Standards along the south property boundary (MW-11R) within approximately 16 years. This alternative should satisfy long-term regulatory concerns with off-site migration.
- No leachate management is proposed along the east impoundment boundary because groundwater impacted by ash leachate discharges to the Wabash River and does not threaten any downgradient groundwater receptors. Based on this discussion, pursuit of an adjusted standard for the applicable groundwater quality standards along the east edge of the "zone of attenuation" is warranted.
- No groundwater extraction is proposed for the deep alluvial aquifer. The concentration of boron detected in MW-14 remains below Class I groundwater quality standards, there is no evidence of migration toward the south, and the only exposure pathway to potable groundwater supply wells is via the plant supply wells. These wells show no evidence of impacts.
- Regulatory precedent exists (35 IAC 816) for construction of a pozzolanic fly ash final cover system using substantially similar technology and construction techniques.
- Significant cost savings may be realized through construction of a pozzolanic fly ash final cover by enhancing plant operations and providing additional capacity for fly ash in Pond A. Based on this discussion, pursuit of an adjusted standard for construction of a pozzolanic fly ash final cover is warranted.

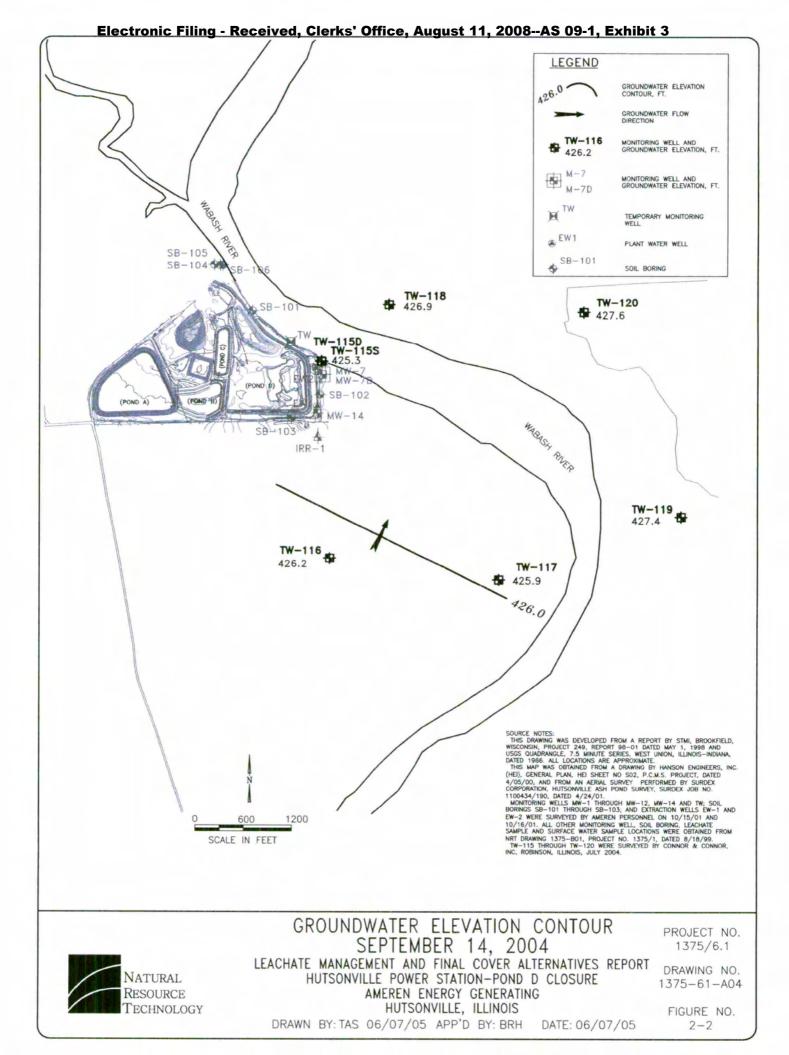
5.4 Recommended Pre-Design Evaluation and Field Testing

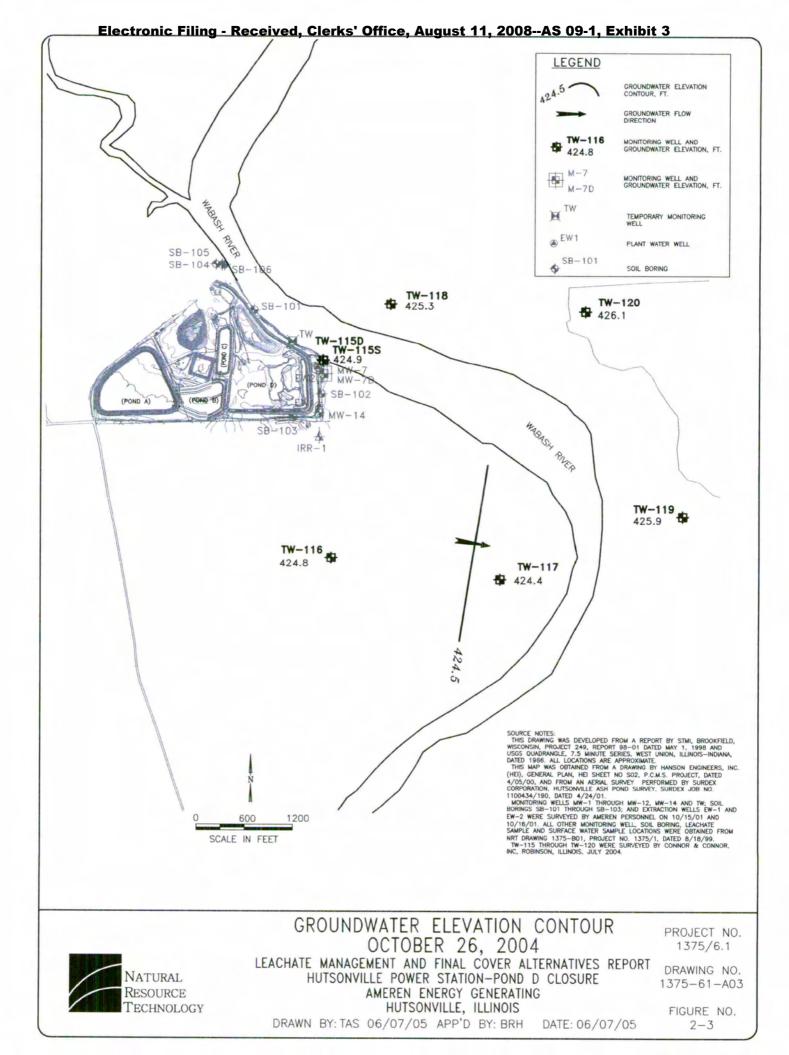
NRT recommends additional pre-design evaluation and field testing prior to design and full-scale construction of a pozzolanic fly ash final cover. Additional pre-design evaluation would include additional geotechnical evaluation of Pond D to determine if a stable subgrade for support of a pozzolanic fly ash cover can be constructed, and creation and sampling of a test pad constructed of the pozzolanic materials at the site in substantial conformance with Section 816.530. No additional bench-scale testing is recommended at this time.

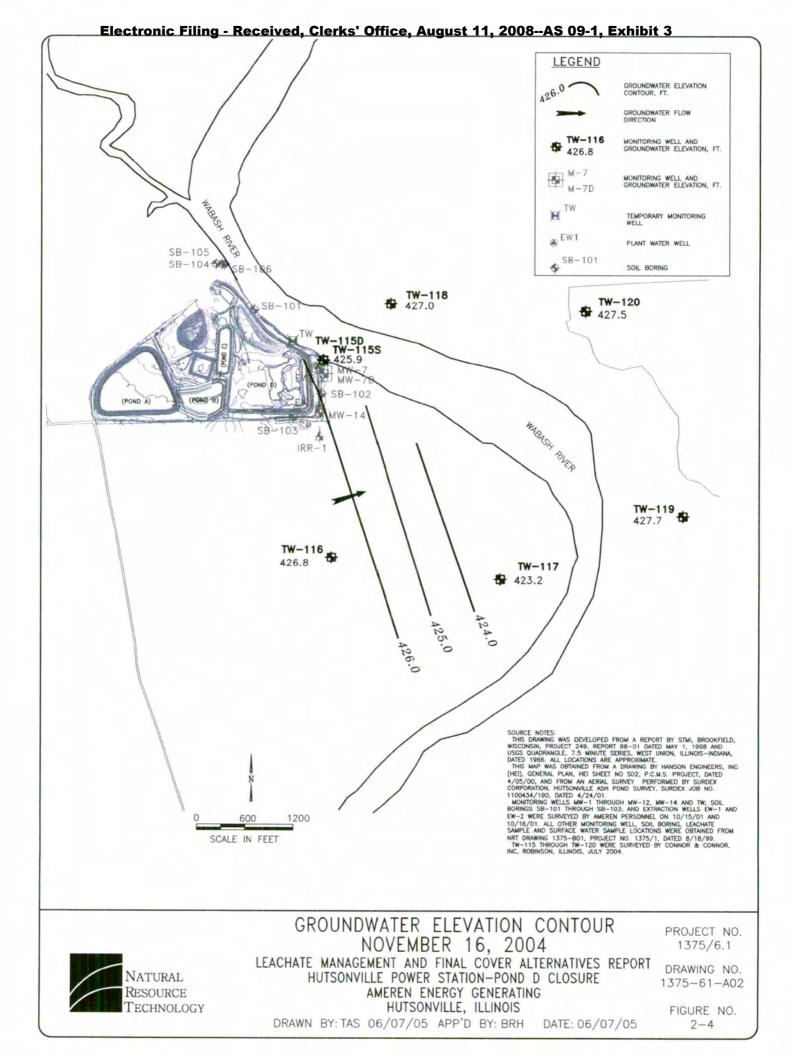

6 **REFERENCES**

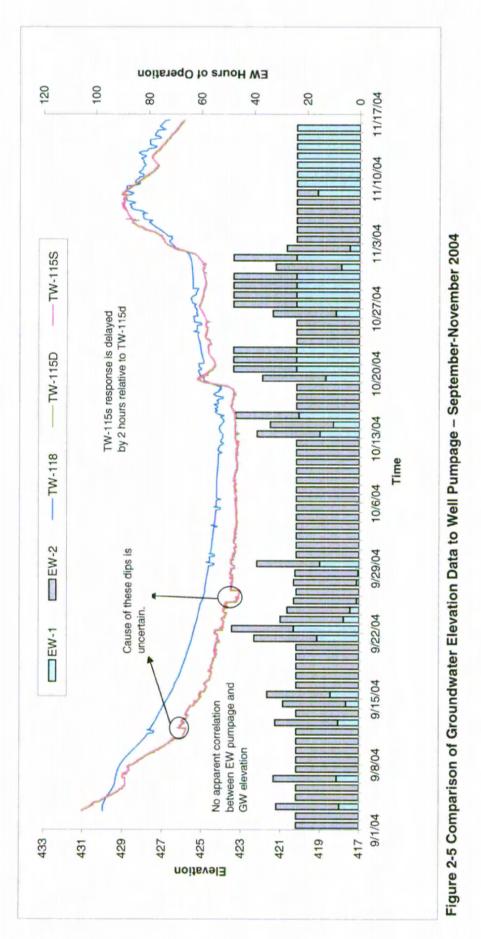

- Dwyer, Stephen F., September 1998. Alternative Landfill Covers Pass the Test. In Civil Engineering. American Society of Civil Engineers, Reston, VA.
- Dwyer, Stephen F., January 2001. *Finding a Better Cover*. In Civil Engineering. American Society of Civil Engineers, Reston, VA.
- EPRI, 2002. MANAGES[™] Version 2.5—Groundwater Data Management Software for Windows[™]. Electric Power Research Institute TR-106900 and AD-113595.
- International Containment Technology Workshop, August 1995. Offices of Science and Technology, USEPA.
- Hanson Engineers, Inc., 1984. Ground Water Study. Hutsonville Power Station, Hutsonville IL.
- Hanson Engineers, Inc., April 7, 2000. Engineering Report Interim Ash and Drainage Collection Ponds. Hutsonville Power Station, Hutsonville IL.
- Hanson Engineers, Inc., August 17, 1984. *Hutsonville Power Station Slurry Wall Study*. Hutsonville Power Station, Hutsonville IL.
- Illinois Environmental Protection Agency, Title 35: Environmental Protection, Subtitle G: Waste Disposal, Chapter I: Pollution Control Board, Subchapter i: Solid Waste and Special Waste Hauling, Part: 811, Effective July 1, 1999 and Part 816, Effective August 15, 1996.
- Natural Resource Technology, Inc., August 19, 1999. Hydrogeologic Assessment Final Report. Project No. 1375.
- RAPPS Engineering and Applied Science, May 29, 2001. *Hutsonville Power Station Ash Pond Closure*. Hutsonville Power Station, Hutsonville IL.
- United States Geological Survey, 2003. *Minerals Yearbook 2003: Boron*. http://minerals.usgs.gov/minerals/pubs/commodity/boron/boronmyb03.pdf
- VFL Technology Corporation, November 8, 2001. Hutsonville Station, "Rough" Estimate for Work Associated with Hutsonville Pond Excavation / Capping. Hutsonville Power Station, Hutsonville IL.
- Wisconsin Electric Power Company, 2000. Coal Combustion Products Utilization Handbook. Library of Congress Cataloging-in-Publication Data.


1375 Alternatives Analysis Report-Final


FIGURES


۰.





Natural Resource Technology

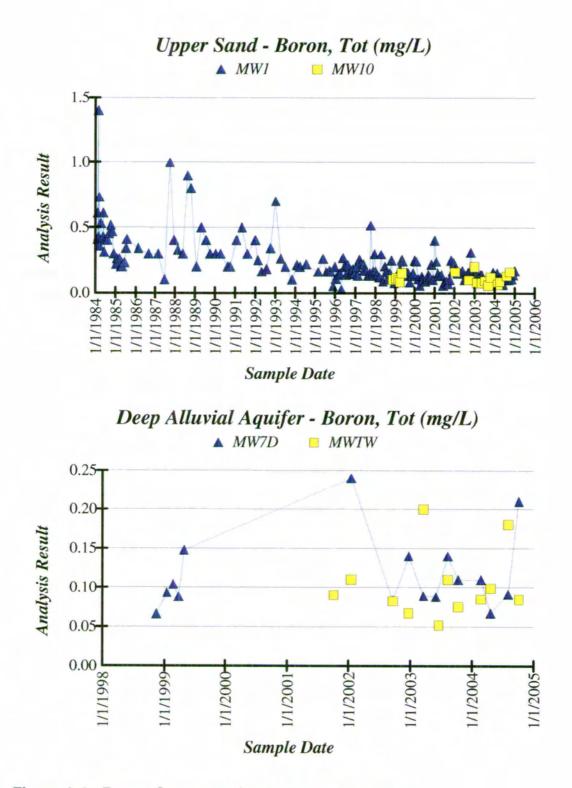


Figure 2-6. Boron Concentration in Background Wells

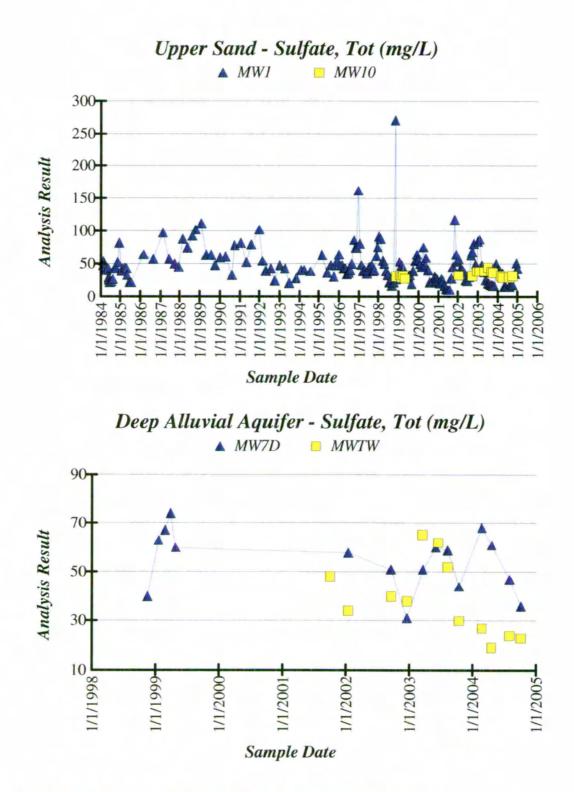
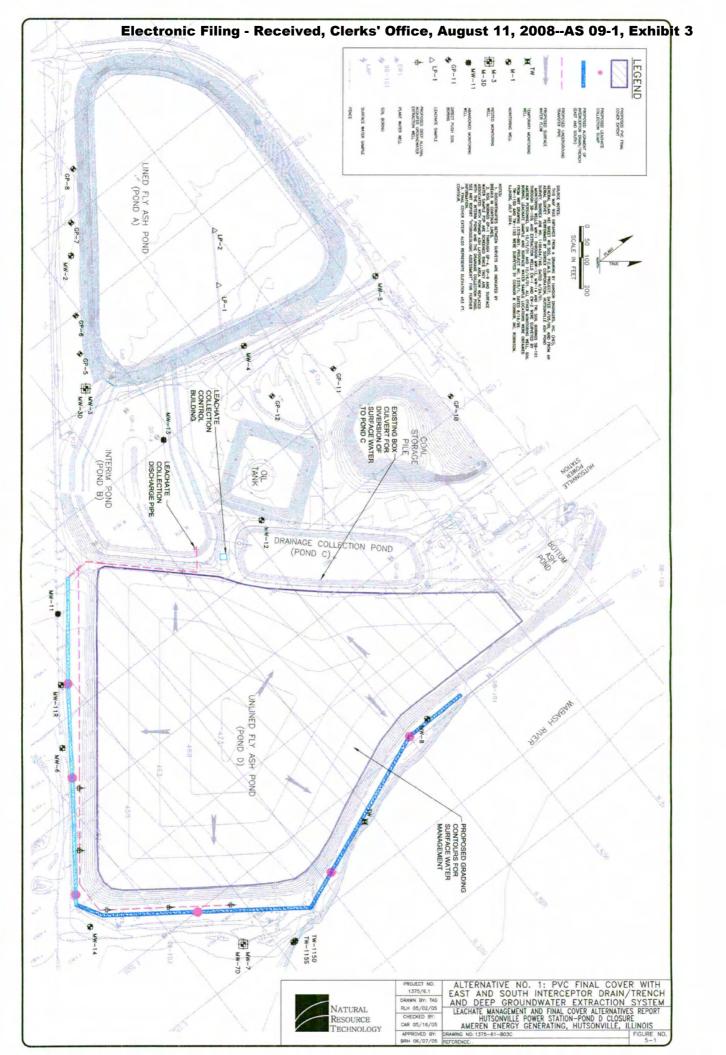
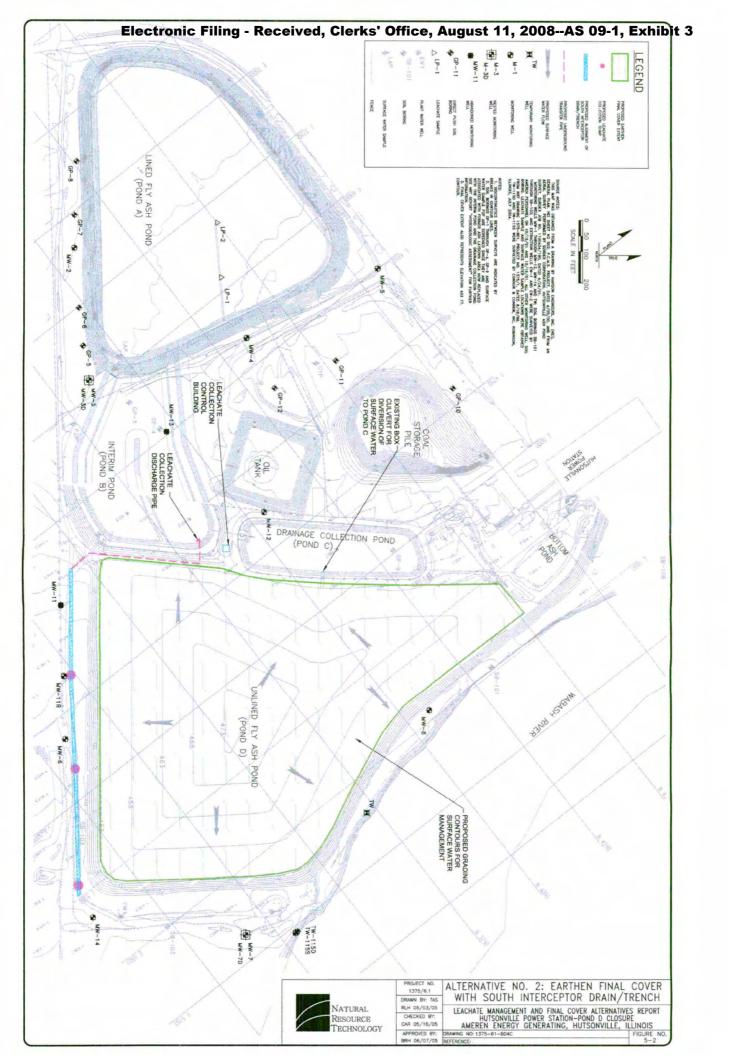
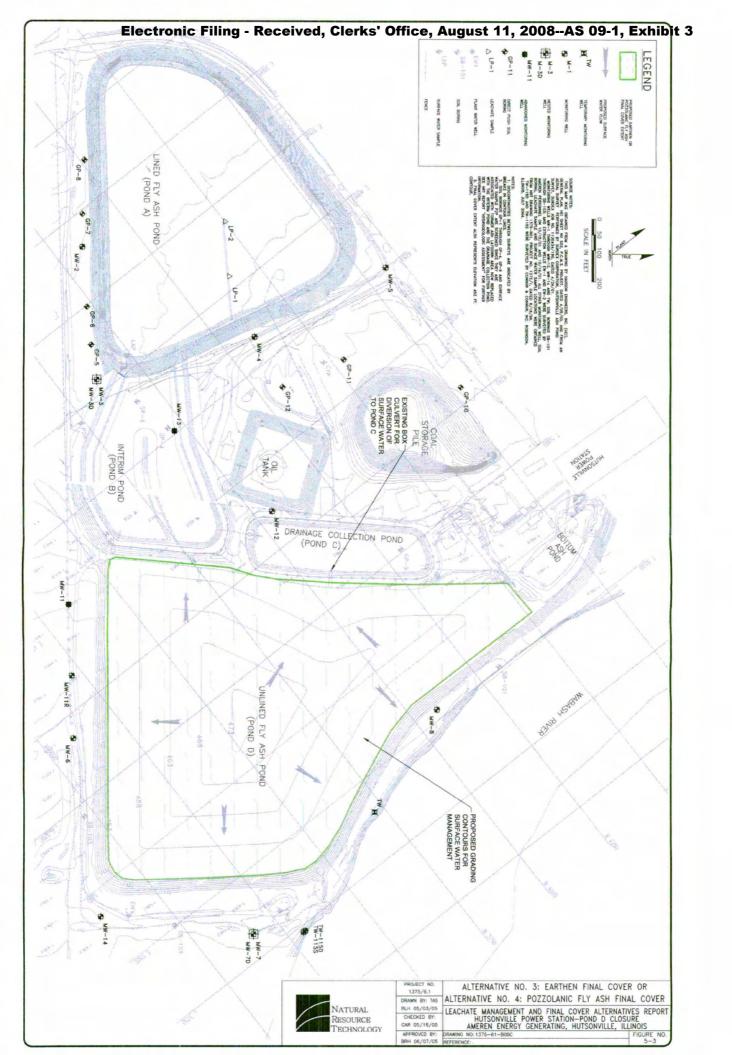





Figure 2-7. Sulfate Concentration in Background Wells

TABLES

Table 2-1 - Soil Boring and Discrete Groundwater Sampling Data

Leachate Management and Final Cover Alternatives Report

Hutsonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure

Ameren Energy Generating - Hutsonville. Illinois

NRT PROJECT NO.: 1375/3.1 BY: AAS CHKD BY: RJC/CAR DATE: 11/13/01

			Ground		Depth to	Bedrock Sur	•
Location	Northing	Easting	Elevation	Target Sample Depth	Water	Eleva	ation
	(ft)	(ft)	(ft, MSL ²)	(ft, BGS ²)	(ft, BGS)	(ft, BGS)	(ft;, MSL)
SB-101	4325	5483	440	no water sample	unknown	>34.5	<:405.5
SB-102	2982	5497	440	(17.5-19.5)(26-29)	unknown	>29.0	<:410.8
SB-103	2969	5038	442	no water sample	unknown	29.0	412.6
SB-104	⁹	9	9	no water sample	unknown	11.0	⁹
SB-105	⁹	9	9	no water sample	unknown	9.0	9
SB-106	9	9	9	no water sample	unknown	>24.5	9
GP-1	3586	4366	460	17 ³	14	17.3	442.5
GP-2	3753	4610	457	19	9	20.0	437.3
GP-3	3924	4093	459	16	11	16.0	443.3
GP-4	3951	4221	459	16	10	17.0	442.4
GP-5	3918	3859	453	11	6	11.3	441.9
GP-6	3981	3754	453	10	6	10.5	442.5
GP-7	4151	3512	452	10	4	18.0	434.0
GP-8	4263	3380	451	no water sample	4	16.0	435.3
GP-9	4307	4990	453	12	7	21.0	.432.4
GP-10	4779	4701	454	12	6	14.3	439.5
GP-11	4534	4399	453	10	5	13.0	439.5
GP-12	4325	4346	451	9	4	9.5	441.3
GP-13	2693	3354	447	9	4	10.0	437.0
GP-14	1105	5752	440	32	10	>40	<400
GP-15	2790	3213	450	12	4	18.0	431.8
GP-16	2887	3065	454	12	4	28.0	425.7
GP-17	2583	3541	446	8	4	12.0	433.6
GP-18	2488	3677	446	12	4	23.8	422.2
GP-19	(6)	(6)	~440	no water sample	10	>32	<410
GP-20	3805	5099	451	21	3	21.0	429.7
GP-21	3594	5239	451	22	3	36.5	414.2
GP-22	4373	5285	459	11 ³	>11.5	11.5	447.2
GP-23	4203	5273	461	22	7	34.0	426.7
LP-1 ⁴	4405	3961	466	7.3	1		
LP-2 ⁴	4502	3815	466	8	1		
 MW-11R	3217	4655	441	5.5-15.5	14	16.0	424.9
MW-14	2812	5326	441	(22-24)(36-39) 28-33	19	>39	<401.93
TW	3717	5605	438	(25-27)(34-39)	16	>39.5	<398.314

Notes:

1. Four-foot stainless steel screen (for GPs) or polyvinyl chloride (PVC) screen (for LPs).

2. MSL = mean sea level; BGS = below ground surface.

- 3. Insufficient water sample recovery for laboratory analysis.
- 4. Temporary 1-inch outside diameter, PVC well point installed in lined ash impoundment.
- 5. Chips at 3 feet in GP-8 and at 0.5 feet in GP-9.
- 6. Surveyors could not locate GP-19. It was about 700 feet south of GP-14.

7. Depth to water in wells MW-11R, MW-14 and TW were taken from top of casing.

- 8. Target sample depths in parentheses for B-103, MW-14 and TW were taken using a hydropunch for deep depths and bailers inside of augers for shallower depths.
- 9. Location and elevation data not available: these soil boring locations were flooded during the most recent survey on October 15 and 16, 2001.

		•
Table 2-2 - Monitoring Well Locations, Elevations, Depth to Bedrock, and Screened Formation	Leachate Management and Final Cover Alternatives Report	University Ach Manazaman Easility I Inlined Ach Immundment (Dand D) Cleaned

BY: AAS/ PAR CHKD BY: RJC/CAR NRT PROJECT NO.: 1375/3.1

DATE: 0-11/01, U-5/05

Hutsonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure Ameren Energy Generating - Hutsonville, Illinois

	Date Drilled	Northing (ft) ⁴	Easting (ft) ⁴	Surface Elevation (ft, MSL ²)	TOC ¹ Elevation (ft, MSL)	Total Well Depth (ft, BGS)	Depth to Bedrock (ft, BGS)	Bedrock Elevation (ft, MSL)	Bedrock Penetration (ft)	Screened Formation ³
MW-1	2/14/1984	5606	2964	455.8	459.22	8.9	6.3	449.5	2.7	sand, ss
MW-2	2/10/1984	4087	3594	452.9	455.85	18.1	>21	1	0	s&g
MW-3	2/9/1984	3865	3957	453.6	455.15	10.8	10.3	443.3	0.5	s&g
MW-3D	10/6/1998	3860	3952	453.6	455.28	25.1	10.5	443.1	15.0	SS
	2/13/1984	4351	4164	453.9	457.02	12.3	10.7	443.2	2.5	s&g, ss
MW-5	2/13/1984	4822	4249	452.2	455.02	17.9	17.7	434.5	1.4	s&g, ss
MW-6	2/9/1984	3095	4818	438.9	443.70	11.5	8.5	430.4	3.0	s&g, ss
MW-7	2/8/1984	3166	5675	438.1	442.78	25.1	>25	•	0	si s&g
DZ-WM	10/5/1998	3176	5676	437.5	438.68	44.3	>44	1	0	si s&g
MW-8	2/7/1984	4081	5469	440.0	443.97	22.5	>21.5	;	0	si sand
0-WM	2/14/1984	5408	5205	451.8	454.78	18.4	16.3	435.5	2.4	si s&g, ss
MW-10	10/7/1998	4730	2560	452.8	454.40	10.7	7.5	445.3	3.5	si s&g, ss
MW-10D	10/7/1998	4729	2565	452.7	454.66	21.3	7.5	445.2	14.0	SS
MW-11R	10/3/2001	3217	4655	440.9	443.55	15.5	16.0	424.9	0	s&g
MW-12	10/8/1998	4054	4638	455.3	456.70	16.9	17.0	438.3	0	si s&g
-14	10/3/2001	2812	5326	440.9	443.35	33.0	>39	;	0	s&g
МĽ	10/2/2001	3717	5605	437.8	440.59	39.0	>39.5	1	0	s&g
	5/1/2004	898053	1176882	438.4	440.80	87.0	60	348.4	15	gravel
TW-115S	5/1/2004	898047	1176886	438.4	440.89	35.0	60	348.4	0	s&g
TW-116 4	4/28/2004	895574	1176953	437.5	439.77	32.2	60	377.5	19	cl s&g
TW-117 4	4/29/2004	895268	1179053	435.0	438.09	21.0	90	345.0	0.5	sand
TW-118	5/4/2004	898745	1177733	437.0	439.21	27.4	>26	1	0	sand
TW-119	5/3/2004	896031	1181339	435.4	438.12	23.3	80	355.4	20	sand
TW-120	5/4/2004	898615	1180157	446.8	449.00	37.6	>36	1	0	s&g

Notes:

TOC = top of casing

2. BGS = below ground surface; MSI = mean sea level

s&g = sand and gravel, si = silty, ss = sandstone, cl=clayey.

4. Location coordinates for wells installed through 2001 based on plant coordinate system. Coordinates for wells installed in 2004

are state plane.

Details
mpletion
Well C
Monitoring
2-3-1
Table.

Leachate Management and Final Cover Alternatives Report

Hutsonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure

NRT PROJECT NO.: 1375/3.1 BY: AAS/ PAR CHKD BY: RUC/CAR

DATE: 0-11/01, U-5/05

Ameren Energy Generating - Hutsonville, Illinois

								:			0)12			
	Screen	Screen Top	Screen Bottom	Screen	Casing/	Filter Pack	Fine Sand	Bentonite Chip	Annular Seal	Concrete Collar	Casing	Gallons	Depth to	Water Level
Well	Top Depth (ft, BGS ¹)	Elevation (ft ¹)	Elevation (ft)	Length (ft)	Screen	Elevation ² (ft)	Thickness ³ (ft)	Thickness ³ (ft)	Thickness ⁴ (ft)	Thickness ⁵ (ft)	Stickup (ft, AGS ¹)	Water Purged ^{3,6}	Water ⁽ (ft, TOC ¹)	Elevation ⁷ (ft)
MW-1	4.0	455.3	450.32	5.0	2" I.D. PVC	447.4-453.5			1.5	1.5	3.4		7.43	451.79
MW-2	5.0	450.8	437.75	13.0	2" I.D. PVC	431.8-449.3	ł	:	2	2	3.0	;	8.67	447.18
MW-3	4.4	449.4	444.35	5.0	2" I.D. PVC	442.7-448.1	:	-	N	2	1.5	:	7.64	447.51
MW-3D	18.4	435.2	430.18	5.0	2" I.D. PVC	428.2-436.7	1	Ŧ	14	3	1.7	20	7.91	447.37
MW-4	5.0	452.2	444.72	7.5	2" I.D. PVC	441.0-450.4	1	1	2	2	3.1	:	9.72	447.30
MW-5	5.0	450.1	437.12	13.0	2" I.D. PVC	433.1-448.3		:	2	2	2.8	:	8.46	446.56
MW-6	5.0	438.6	432.20	6.4	2" I.D. PVC	427.5-434.9	:	:	2	2	4.8	:	10.83	432.87
MW-7	15.0	427.7	417.68	10.0	2" I.D. PVC	412.9-423.9	•	•	2	2	4.7	1	10.71	432.07
MW-7D	38.2	399.4	394.38	5.0	2" I.D. PVC	392.5-402.5	3	:	32	3	1.1	27	10.81	427.87
MW-8	16.5	426.5	421.47	5.0	2" I.D. PVC	417.9-423.9	-	•	2	2	4.0	-	16.05	427.92
6-WM	8.5	446.4	436.38	10.0	2" I.D. PVC	433.2-444.0	1	:	2	2	3.0	1	7.59	447.19
MW-10	4.1	448.7	443.70	5.0	2" I.D. PVC	441.9-448.9	1	+	4	1	1.6	20	3.10	451.30
MW-10D	14.3	438.4	433.36	5.0	2" I.D. PVC	431.4-438.9	1	1	14	ł	2.0	12	3.68	450.98
MW-11R	2.8	438.1	428.05	10.0	2" I.D. PVC	424.9-436.4	1	:	4	•	2.7	120	13.55	430.00
MW-12	5.5	449.8	439.80	10.0	2" I.D. PVC	438.5-450.5	1	1.5	5	•	1.4	23	9.63	447.07
MW-14	25.5	415.4	410.35	5.0	2" I.D. PVC	401.9-414.9	2	1	24	1	2.4	150	18.23	425.12
Ψ	31.2	406.6	401.59	5.0	2" I.D. PVC	397.8-405.8	2	1	30	1	2.8	120	16.30	424.29
TW-115D	82	356.4	351.40	5.0	2" I.D. PVC	350.4-357.4	۰	3.0	28	1	2.4	135	15.48	425.32
TW-115S	30	408.4	403.40	5.0	2" I.D. PVC	402.4-409.4	-	:	80	:	2.5	40	15.55	425.34
TW-116	25	412.5	407.50	5.0	2" I.D. PVC	406.5-413.5	-	•	23	1	2.3	40	13.55	426.22
TW-117	15	420.0	415.00	5.0	2" I.D. PVC	414.0-421.0	1	:	13	;	3.1	40	12.15	425.94
TW-118	20	417.0	412.00	5.0	2" I.D. PVC	411.0-418.0	-	:	18	;	2.2	30	12.33	426.88
TW-119	15	419.8	414.82	5.0	2" I.D. PVC	414.4-421.4	٢	:	13	1	2.7	30	10.77	427.35
TW-120	30	416.4	411.40	5.0	2" I.D. PVC	410.8-417.8	-	•	28	ł	2.2	50	21.44	427.56

Notes:

TOC = top of well casing; BGS = below ground surface; AGS = above ground surface.

2. All elevations have been adjusted to match information collected during October 2001 survey of the monitoring wells.

3. Data on fine sand thickness, bentonite chip thickness, and gallons of water purged were only available for wells installed since 1998.

4. Annular seal thickness includes bentonite-cement grout and bentonite pellets/chips.

5. Concrete coilar was not installed at shallow 1996 wells and all wells installed in 2001 in order to maximize annular seal. Concrete collars were also not installed

around 2004 wells due to their anticipated abandonment within approximately 18 months.

6. Volume removed during well development.

7. Depth to groundwater measured on 11/12/98 except as follows: 10/3/01 for wells MW-11R, MW-14 and TW: 9/14/04 for the TW-100 series wells.

--: Not present or unknown.

1375 Alternatives Analysis Tables 2005_FINAL.xls

Table 2-3

1 of 1

Table 2-4 - Monitoring Well Slug Test Results NR* Leachate Management and Final Cover Alternatives Report NR* Hutsonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure BY: Ameren Energy Generating - Hutsonville, Illinois DA*

NRT PROJECT NO.: 1375/3.1 BY: AAS/ PAR CHKD BY: RJC/CAR DATE: O-11/01, U-5/05

Well	Hydraulic Conductivity (ft/min)	Hydraulic Conductivity (cm/s)	Geologic Unit
MW-1 ¹	8.0E-05	4.1E-05	Sand & Sandstone
MW-3 ¹	5.2E-02	2.7E-02	Silty Sand & Gravel
MW-3D ¹	1.1E-03	5.4E-04	Sandstone
MW-5 ¹	1.6E-02	8.0E-03	Silty Sand & Gravel
MW-6 ¹	6.3E-02	3.2E-02	Clayey Gravel, Silty Sand, Sandstone
MW-7 ¹	5.1E-04	2.6E-04	Sandy Silt, Sand & Gravel
MW-7D ¹	9.5E-02	4.8E-02	Silty Sand & Gravel
MW-9 ¹	1.6E-03	8.3E-04	Silt, Silty Sand, Sandstone
MW-10 ¹	1.2E-03	6.2E-04	Silty Sand, Sandstone
MW-10D ¹	7.9E-04	4.0E-04	Sandstone
MW-12 ¹	1.2E-01	6.2E-02	Sand
MW-13 ^{1,2}	3.5E-02	1.8E-02	Clayey Sand & Gravel
TW ¹	4.7E-02	2.4E-02	Sand
TW-115D ¹	2.3E-02	1.2E-02	Gravel with Sand
TW-115S ³	1.8E-01	9.3E-02	Gravel to Sand
TW-116 ¹	9.0E-04	4.6E-04	Clayey Sand & Gravel
TW-117 ¹	1.3E-02	6.7E-03	Sand
TW-118 ³	3.2E-01	1.6E-01	Sand
TW-119 ¹	4.4E-03	2.2E-03	Sand

Notes:

1. Bouwer and Rice (1976) analysis method.

2. Slug test data for monitoring well MW-13 provided for reference. MW-13 has been abandoned.

3. Butler (1998) analysis method.

Table 2-5 - Background Statistical Summary	nmary							-	
Leachate Management and Final Cover Alternatives Report	tives Re	port			NRT	NRT PROJECT NO.: 1375/6.1	1.2		
Hutsonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure	d Ash Im	poundment (P	ond D) Clos	ure		BY: BRH CHKD BY: PAR	PAR		
Ameren Energy Generating - Hutsonville, Illinois	ois					DATE: 5/6/05			
a. Shallow Sand and Gravel									
		No.		Normal/			TI Upper	811.320	Class I
Parameter	units	Results ¹	% BDL	Lognormal	Minimum	Maximum	Limit	Background	Standard
Alkalinity, total (lab), (mg/L as CACO3)	mg/L	101	0	No / No	98	332	NC	332	NS
Boron, total	mg/L	101	0	No / Yes	0.059	0.4	0.27	0.27	2.0
Calcium, total	mg/L	101	0	No / No	ee Se	160	NC	160	NS
Manganese, total	mg/L	101	4.76	No / Yes	0.001	3.67	2.29	2.3	0.15
pH (field)	std	83	0	No / No	7.03	7.96	NC	7.0 - 8.0	6.5-9.0
Sulfate, total	mg/L	101	0	No / No	10	270	NC	270	400
Total Filterable Residue (TDS)	mg/L	102	0	Yes / No	180	470	456	456	500
b. Deep Alluvial Aquiter		- 4						000 110	
	2	ZO.		Normal/				811.320	Class
Parameter	units	Results ¹	% BDL	Lognormal	Minimum	Maximum	Limit	Background	Standard
Alkalinity, total (lab), (mg/L as CACO3)	mg/L	26	0	Yes / Yes	170	300	315	315	NS
Boron, total	mg/L	28	0	No / Yes	0.052	0.24	0.26	0.26	2.0
Calcium, total	mg/L	27	0	Yes / Yes	56	96	102	102	NS
Manganese, total	mg/L	28	0	No / No	0.57	2.977	NC	3.0	0.15
pH (field)	std	18	0	No / No	7.3	8,44	NC	7.3-8.4	6.5-9.0
Sulfate, total	mg/L	28	0	Yes / Yes	19	74	85	85	400
Total Filterable Residue (TDS)	mg/L	29	0	Yes / Yes	280	470	511	511	500

<u>Notes:</u> 1. Based on data from 1/1/1998 through 4/30/2005

1375 Alternatives Analysis Tables 2005_FINAL.xls Table 2-5

1 of 1

 Table 2-6a - Groundwater Concentration Results from Monitoring Wells-Shallow Sand and Gravel and Sandstone Wells

 Leachate Management and Final Cover Alternatives Report

 Hutsonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure

Ameren Energy Generating - Hutsonville, Illinois

		Sample Date	рН	Alkalinity	Hardness	Sulfate	TDS	Boron	Calcium	Manganese
Well	Formation		s.u.	mg/L	mg/L	mg/L	mg/L	µg/L	mg/L	µg/L
					Quality Standa				and Sandsto	
	ss I GW Standard		<u>6.5-9.0</u>	ns	ns	<u>400</u>	<u>500</u>	<u>2.000</u>	ns	<u>150</u>
811.320 Ba	ckground (From	1able 2-5)	<u>7.0-8.0</u>	332	ns	270	<u>456</u>	<u>270</u>	<u>160</u>	2,300
MW-1	shallow sand	9/17/2002	7.53	290	360	68	440	150	99	42
	and gravel	10/17/2002		290	370	80	450	<u>310</u>	<u>160</u>	19
		11/21/2002	7.12		380		••	140	90	<u>150</u>
		11/25/2002	7.2	290		49	360			
1		12/11/2002	7.09	300	370	39	370	180	96	<u>270</u>
		1/8/2003		180	274	84	300	140	67	3
		2/5/2003		200	300	87	340	140	76	53
		3/17/2003		110	180	48	180	120	41	3
		4/7/2003 5/5/2003		110 140	160 170	38	210	140 140	37	1 14
		6/2/2003		140	220	37 25	200		40	14 72
		7/7/2003		320	310	25 20	270 330	110 92	56 85	
		8/4/2003		280	290	20 19	330	92 110	85	<u>240</u> 47
		9/8/2003		240	290	18	300	65	85 87	47 22
		10/6/2003		240	290	17	320	93	80	70
		11/3/2003		290	290	16	340	93	78	120
		12/1/2003		240	330	50	370	93 160	75	13
		1/5/2004		230	260	40	260	100	60	41
		2/9/2004		140	150	40	190	150	42	25
		3/2/2004		160	190	32	240	110	46	32
		4/4/2004		140	190	35	210	120	40	44
		5/4/2004		210	240	15	260	100	55	280
		6/1/2004		290	300	15	290	67	77	220
		7/12/2004		300	380	18	350	82	85	210
		8/2/2004		290	300	15	330	99	86	170
		9/13/2004		280	310	20	370	98	80	100
		10/4/2004		300	310	18	340	140	85	47
1		11/8/2004		280	360	35	360	110	85	130
1		12/6/2004		240	320	51	300	140	84	<u>260</u>
		1/3/2005		160	260	42	260	170	48	<u>180</u>
		2/23/2005		140	140	34	200	200	38	<u>180</u>
		3/14/2005		140	150	26	180	130	40	<u>300</u>
		4/19/2005		160	170	32	230	140	54	<u>200</u>
MW-6	shallow sand	9/19/2002	7	240	460	200	<u>690</u>	<u>15,000</u>	130	<u>3,600</u>
	and gravel	12/13/2002	<u>6.91</u>	250	490	240	<u>640</u>	<u>16,000</u>	130	<u>1.300</u>
		3/18/2003		160	590	<u>450</u>	<u>880</u>	11,000	<u>170</u>	7
		5/12/2003		230	540	<u>360</u>	<u>880</u>	8.200	150	4
		8/4/2003		190	500	<u>330</u>	<u>780</u>	<u>13,000</u>	150	80
		10/13/2003		240	550	<u>300</u>	<u>770</u>	15,000	140	<u>290</u>
		2/23/2004		240	700	<u>310</u>	<u>790</u>	14,000	150	<u>880</u>
		4/4/2004		280	590	<u>310</u>	<u>810</u>	<u>11.000</u>	140	<u>890</u>
		7/12/2004		270	700	<u>360</u>	<u>900</u>	<u>12,000</u>	<u>160</u>	<u>1.700</u>
		11/8/2004		180	610	380	<u>900</u>	<u>14,000</u>	140	<u>590</u>
		1/4/2005		240	700	<u>380</u>	890	<u>15,000</u>	140	<u>970</u>
MW-7	shallow sandy	9/18/2002	<u>6.89</u>	370	650	240	<u>760</u>	<u>2,200</u>	<u>180</u>	52
	silt	12/19/2002	<u>6.91</u>	<u>420</u>	700	250	<u>790</u>	<u>2,500</u>	<u>180</u>	<u>220</u>
		3/19/2003		280	450	160	<u>570</u>	<u>500</u>	130	20
		6/2/2003		380	650	220	<u>790</u>	<u>1,800</u>	150	24
l		8/11/2003		<u>490</u>	540	220	<u>790</u>	<u>2,100</u>	<u>170</u>	18
ļ		10/13/2003		440	710	240	<u>820</u>	2,200	<u>180</u>	120
		2/23/2004		430	760	<u>280</u>	<u>880</u>	2,100	<u>190</u>	22
		4/19/2004		<u>420</u>	840	<u>310</u>	<u>970</u>	2,000	<u>180</u>	51
		8/2/2004		<u>460</u>	780	<u>310</u>	<u>950</u>	<u>2,000</u>	<u>200</u>	<u>160</u>
l		10/4/2004		<u>490</u>	720	<u>300</u>	<u>1,000</u>	2,600	<u>210</u>	120
I		3/15/2005		<u>430</u>	580	220	<u>730</u>	<u>1,400</u>	150	12

Table 2-6a - Groundwater Concentration Results from Monitoring Wells-Shallow Sand and Gravel and Sandstone Wells Leachate Management and Final Cover Alternatives Report

Hutsonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure Ameren Energy Generating - Hutsonville, Illinois

		Sample Date	pH	Alkalinity	Hardness	Sulfate	TDS	Boron	Calcium	Manganese
Well	Formation	•	s.u.	mg/L	mg/L	mg/L	mg/L	µg/L	mg/L	μğ/L
				Groundwater	Quality Standa	ards for Shal	low Sand	and Gravel	and Sandsto	and the second design of the s
Illinois Cla	ss I GW Standard		<u>6.5-9.0</u>	ns	ns	400	<u>500</u>	2,000	ns	<u>150</u>
811.320 Ba	ckground (From	Table 2-5)	<u>7.0-8.0</u>	<u>332</u>	ns	<u>270</u>	456	<u>270</u>	<u>160</u>	2,300
MW-8	shallow silt	9/19/2002	6.92	330	1,100	790	1,300	10,000	320	3,800
	to gravel	12/19/2002	6.97	220	1,100	740	1,600	11,000	320	3,600
	•	3/17/2003		300	1,300	960	1,700	12,000	390	2,900
		6/18/2003		<u>360</u>	1,179	940	1,800	12,000	360	2,500
		8/11/2003		420	1,200	960	1,800	14,000	360	2,500
		10/13/2003		350	1,300	930	1,800	13,000	370	2,200
		2/23/2004		<u>360</u>	1,500	<u>820</u>	1,800	<u>13,000</u>	<u>340</u>	<u>4,700</u>
		4/19/2004		<u>340</u>	1,200	870	1,800	12,000	<u>310</u>	2,300
		8/2/2004		280	1,200	<u>800</u>	1,500	<u>11,000</u>	<u>300</u>	<u>2,100</u>
		10/4/2004		220	760	<u>620</u>	<u>1,200</u>	<u>11,000</u>	<u>200</u>	<u>1.300</u>
		3/16/2005		<u>400</u>	1,100	<u>940</u>	1,600	<u>13,000</u>	<u>310</u>	<u>2,200</u>
MW-10	shallow sand	9/17/2002	7.11	270	320	31	380	98	90	100
	and gravel	12/19/2002	7.06	260	320	38	330	200	86	4
	•	2/5/2003		230	290	38	310	79	76	1
		5/5/2003		300	250	38	270	76	80	2
		7/7/2003		240	310	44	340	92	89	22
		9/8/2003		260	320	38	380	59	96	13
		10/13/2003		220	370	36	450	120	100	19
		3/2/2004		220	380	31	410	64	100	8
		4/4/2004		230	420	29	390	86	100	29
		8/3/2004		270	440	29	450	130	120	45
		10/4/2004		330	380	31	<u>470</u>	160	110	40
		3/14/2005		300	310	33	400	150	93	8
		4/19/2005		270	350	32	430	68	130	24
MW-10D	sandstone	9/17/2002	7.29	200	230	30	290	84	65	89
	background	12/19/2002	7.33	200	250	31	270	96	65	71
		2/5/2003		210	230	30	220	240	130	<u>270</u>
		5/5/2003		250	230	28	240	77	63	74
		7/7/2003		210	230	35	270	88	66	82
		9/8/2003		210	230	32	270	59	67	82
		10/6/2003		230	230	30	280	96	66	82
		3/2/2004		210	260	30	270	95	64	65
		4/4/2004		210	240	28	260	74	61	88
		8/3/2004		220	230	29	280	100	66	81
		10/4/2004		220	280	27	280	140	67	93
		3/14/2005		240	230	32	260	130	61	55
		4/19/2005		200	290	31	270	160	77	180
MW-11R	shallow sand	9/19/2002	7.15	200	480	390	<u>850</u>	6,600	150	3,400
	and gravel	12/13/2002	7.09	260	950	690	1,300	7,000	<u>250</u>	<u>880</u>
		3/18/2003		210	740	<u>590</u>	1,100	5,600	220	<u>380</u>
		5/12/2003		280	480	<u>590</u>	<u>1,100</u>	5,800	220	<u>590</u>
		8/4/2003		120	620	<u>650</u>	<u>1,200</u>	<u>2,600</u>	<u>220</u>	<u>520</u>
		10/13/2003		120	780	<u>650</u>	<u>1,200</u>	2,800	<u>220</u>	<u>700</u>
		2/23/2004		61	890	<u>720</u>	<u>1,200</u>	<u>2,800</u>	<u>240</u>	<u>1,200</u>
		4/4/2004		260	970	<u>650</u>	<u>1,300</u>	<u>4,900</u>	<u>240</u>	<u>270</u>
		7/12/2004	••	230	940	<u>670</u>	<u>1,300</u>	5,800	260	<u>320</u>
		11/8/2004		220	810	<u>650</u>	<u>1,300</u>	8,000	230	<u>240</u>
TIAL 140	abatta:	1/4/2005		140	880	<u>680</u>	1,300	4,300	290	<u>850</u>
TW-116	shallow clay to gravel	3/28/2005 4/11/2005		260 250	300 380	80	410	<u>600</u>	75	<u>1,000</u>
	to graver	4/11/2005	7.56	250	380	<u>85</u>	410	<u>440</u>	78	<u>780</u>

Notes:

1. Concentrations equaling/ exceeding an Illinois Class I GW Standard are underlined/ italicized.

2. Concentrations equaling/ exceeding a 811.320 Background level are bold/ underlined.

Table 2-6b - Groundwater Concentration Results from Monitoring Wells-Deep Alluvium Wells

Leachate Management and Final Cover Alternatives Report

Hutsonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure Ameren Energy Generating - Hutsonville, Illinois

		Sample Date	ρН	Alkalinity	Hardness	Sulfate	TDS	Boron	Calcium	Mariganese
Well	Formation	-	s.u.	mg/L	mg/L	mg/L	mg/L	µg/L	mg/L	µg/L
					Groundwater G	uality Stand	ards for D	eep Alluviu	m	·
Illinois Cla	ss I GW Standard	t l	<u>6.5-9</u>	ns	ns	<u>400</u>	<u>500</u>	<u>2,000</u>	ns	<u>150</u>
811.320 Ba	ckground (From	Table 2-5)	<u>7.3-8.4</u>	<u>315</u>	ns	<u>85</u>	<u>511</u>	<u>260</u>	<u>102</u>	<u>3,000</u>
MW-7D	deep alluvium	9/18/2002	7.41	200	270	51	370	83	71	750
	background	12/19/2002	7.38	210	320	31	320	140	67	750
	-	3/19/2003		170	310	51	350	89	66	760
		6/2/2003		200	410	60	390	88	68	680
		8/11/2003		240	270	59	370	140	69	<u>660</u>
		10/13/2003		220	320	44	320	110	66	<u>640</u>
		2/23/2004		260	510	68	430	110	89	<u>770</u>
		4/19/2004		260	420	61	440	67	85	830
		8/2/2004		260	330	47	360	91	81	<u>570</u>
		10/4/2004		300	330	36	420	210	85	<u>660</u>
		3/15/2005		220	240	42	280	62	61	<u>450</u>
MW-14	deep alluvium	9/18/2002	<u>7</u>	430	640	230	790	190	180	530
		12/13/2002	6.92	400	700	210	740	<u>570</u>	180	500
		3/18/2003		390	630	120	570	730	160	510
		5/12/2003		480	700	230	830	1,000	180	480
		8/11/2003		430	640	180	740	400	160	410
		10/13/2003		430	680	200	810	630	170	510
		2/23/2004		460	690	190	810	1,400	180	430
		4/4/2004		450	740	190	780	1,500	170	400
		8/3/2004		500	660	200	810	1,000	180	450
		11/8/2004		440	700	180	760	1,100	170	510
		3/15/2005		450	620	220	780	880	160	350
TW	deep alluvium	9/19/2002	7.43	200	270	40	340	82	77	1,400
	background	12/19/2002	7.31	230	360	38	340	67	78	1,200
	0	3/17/2003		200	300	65	340	200	83	930
		6/17/2003		210	290	62	370	52	74	820
		8/11/2003		220	300	52	310	110	71	1,100
		10/13/2003		200	230	30	280	75	56	760
		2/23/2004		290	410	27	470	85	86	2.100
		4/19/2004		260	420	19	340	99	72	1,200
		8/2/2004		260	420	24	350	180	72	1,400
		10/4/2004		280	350	23	350	84	77	1,400
		3/16/2005		187.5	250	34	250	60	57	640
TW-115D	deep alluvium	4/11/2005	•	220	300	55	320	22	59	730
		4/27/2005	7.41				-	36		
TW-115S	deep alluvium	4/11/2005		260	340	46	340	20	75	
100-1133	deep and vium	4/27/2005	7.5	200		40		32		<u>.200</u>
EW-1	deep alluvium	8/1/2001		289	380	60	472	80	<u>108</u>	445
EW-2	deep alluvium	7/31/2001		250	340	60	434	130	92	<u>590</u>
		3/23/2005	8.2	260	300	50	••	100	82	<u>.420</u>
TW-117	deep alluvium	3/28/2005		<u>500</u>	540	51	<u>590</u>	61	<u>160</u>	1,300
		4/11/2005		<u>460</u>	550	49	<u>580</u>	65	<u>120</u>	<u>840</u>
		4/27/2005	<u>6.88</u>				••	86		
TW-119	deep alluvium	4/27/2005		270	320	39	370	40	97	730

Notes:

1. Concentrations equaling/ exceeding an Illinois Class I GW Standard are underlined/ italicized.

2. Concentrations equaling/ exceeding a 811.320 Background level are bold/ underlined.

3. Sample taken from combined header, EW-2 pumped for 24 hours and EW-1 pumped for 1 hour on 3/23/05.

utsonville A meren Eners	sh Management 39 Generating - H	Hutsonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure Ameren Energy Generating - Hutsonville, Illinois	ndment (Pond D) Closure			BY: CAR / EJT CH DATE: 7/18/05	CHKD BY: CAK/BKH (EJT S/19/05)
Closure Alternatives	Option	Description	Construction / Implementation F cesibility	Effectiveness	Relative Cost Capital	Annual O & M	Carry Forward to Modeling and Further Evaluation (YesiNo)
Leachate Management Alternatives	Site Monitoring w/ No Leachate Collection	Establish groundwater monitoring program for Pond D to evaluate trends in groundwater quality.	The groundwater monitoring network is already in place - additional wells can be added as necessary to enhance the monitoring network. Implementation of this option may equire establishment of background concentrations and possibly a petition for adjusted groundwater quality standards.	Site monitoring will have no effect on downgradient groundwater quality or leachate loading rates to the Wahash River.	PICHATERLY MONTORING CURRENTLY VISS PERFORMED. NO JUDITONAL COST PERFORMED. NO JUDITONAL COST Quartery site monitoring outinues at the site and site quarter performed at the site. Additional monitoring would be required for any leachate management of leachate management final cover alternative for an indefinite period of time. Periocoporated with site monitoring.	RENTLY COST COST and site feachate management or period of time.	YES At a minimum, site monitoring will be performed at the site. Additional teachate management alternatives may be incorporated with site manitoring.
	Shallow Strondwater Extraction Combined with Interceptor Drain/Treach	A network of 10-12 groundwater Install extraction wells along the cast prover boundary of trend D and an interceptor which drain/trench along the south boundary size. or Pound D to prove or Pound D to capture teachate mixed to 100 with groundwater from the shallow the stallow situctay unit. Extracted leachate would #002. Decomveyed to the Drainage Culiection Pound (Pond C) and/or the interim Pond (Pond B).	ation of groundwater extraction wells between Pond D and the Wabssh River could difficult due to spatial constraints, buried utilities, and store plue will tebasts. could effect areas for overnotical drilling equipment and thir conventional well the area downgradient of Pond D is before the (D-yaer flood elevation and pone durg. A hydraulic analysis meeds to be performed to model additional loading to durg. A hydraulic analysis meeds to be performed to model additional loading to tice water system and to evaluate compliance with the NPDES permit for outfall	Effectiveness is questionable because impacted silly clay unit has low [5930,000] byforaulic conductivity and would be difficult to pump efficiently. System Questionable effectiveness for capital would have to be designed to withstand seasonal flooding of the Whisth for Sor. Cost could increase substantially River. Calcitorio of factuate and management through Powel B and/or Pawel (2 to 5 times) if treatment of extracted for eventual discipation bitward here. May prevent migration of ash concentrations in downgameline groundwater. But would not result in a net relation of leachance to the Wash prevent migration of ash constituents of faite, and meet Part 811.320 zone of attenuation requirements.	(5)39,000 Questionable effectiveness for capital Questionable effectiveness for capital Questionable for the constraint of the constraint (a schate is required.	\$56,000 O.&.M. would continue for an indefinite proiod (>100 years).	YES YES interceptor drait/wrench ould interceptor drait/wrench ould effectively contain downgradient application of an interceptor installation of an interceptor drain/terench along the entire east and south boundary of Pond D.
	Interceptor Drain/Treach	An interceptor trench and drain would sound) of Poord Dio caquite leachand sound) of Poord Dio caquite leachand and the wing diamaster. The featin would flow to collection sumps under the Interim Pool (Pool B), and/or the Interim Pool (Pool B).	Spatial constraints, burried utilities and sheet pile wall tiebacks, between the river and bepending on site access. system could be designed to collect factuate Provid Docular direct constraints, burried utilities and sheet pile wall tiebacks, between the river and be provide Docular direct constraints and system tends. A hydraulic analysis wall downgadeut of Proh Do cull direct constraints and system tends. A hydraulic analysis wall downgadeut of Proh Do cull direct constraints and system tends wall for the provide provide additional doug to the statice water system and evaluate in hydrageology than groundwater curration. An interceptor trench wald compliance with the NPDES permit for outial #002. Subset of additional provide additional doug to the statice water system and evaluate in this groundwater curration wells. Collection of leadate and management of this groundwater currations with the NPDES permit for outial #002. Subset of \$2000 may reduce concernations will dore the additional doug to the river. May provent intragation of aschate loading to the river. May perent intragation of substation of fact, and meet Par 811. 320 zone of attendance to the additional dore and activitient additing to the river. May prevent intragation of substation of fact, and meet Par 811. 320 zone of attendance to the additional dore additing to the river. May prevent intragation of substation of fact, and meet Par 811. 320 zone of attendance to the additional tender to the additional tender to the additional tender tender additional t	Depending on site access, system could be designed to collect fractime dewngateut of Pron L and will be test susceptible to roblect fractimes in hydrogeology than groundwater extraction. An interceptor traction would litely preter traget the googles stratic logical will be abate than groundwater extraction wells. Collection of leachter and management untion produce on certraction wells. Collection of leachter and management untion produce concentrations in an or constration strategies the undial #0D2 may robuse concentrations in downgatien groundwater. May would not result in a ner reduction of leachter loading to the river. May prevent ingradion of ach constituents of site. and meet Part 811.320 zone of atternation requirements. If properiy designed.	 \$950,000 \$950,000 Constantiable effectiveness for capital cost. Cost oud increases substantially cost. Cost oud increases substantially learnament of curracted learnament of curracted endined an interceptor drain/freench is installed only along the south installed on along the south	547,000 547,000 continue for an indefinite period (>100 years). 530,000 Annual O. & Costs for south interceptor dain/reach only.	Hypes In Mass and a second water extraction wells and at interceptor durinfletech downgradier migration of ach downgradier migration of ach downgradier migration of ach to those for installation of groundwater to those for installation of groundwater extraction wells along the east houndary and an interceptor drainforcath along the south boundary of Pond D.
	Horizontal Wells Interceptor Drain/Treach	A system of horizontal extraction wells interest the sourdwater plane and teachate from Pool D. Extracted teachate would be conveyed to Dimitage Collection Pool (Pool B), and/or the Interim Pool (Pool B),	A system of horizontal extraction wells. Horizontal wells may be easier to construct than a conventional groundwater extraction of to intervate the groundwater plume and an interceptor drainforch system. A hydraulic analysis would be medded to model teachate from Pood. D. Extracted adding to the suice water system and evaluate compliance with the NPDES teachate around be conveyed to permit for outfall #002. adding the suice water system and evaluate compliance with the NPDES and/or the Interim Pood (Pond B).	a conventional groundwater extraction of it could be difficult to demonstrate the effectiveness of a horizunal well is 11,040,000 system, expending if preferential by the preferencial provide management intervation with the NPDS system, expending in the targeting the geologic fields an angement intervation analysis would be needed to model system extra impacted by ash leachar compared to an intervation the endunce extra with the NPD system extra intervation and the intervation of the and system syntem is the second to the endunce of the analysis would be meanly extra intervations in downgated programmatic management intervations in downgated system extra intervation in downgated system extra intervations in downgated system extra the system extra intervations in downgated system extra intervations in downgated system extra intervations in downgated system extra the system is not intervated intervations in downgated system extra the system is not intervated intervations in downgated system extra the system is not antervated intervations in downgated system extra the system is not intervated intervation in downgated system extra the system is not intervated intervation of the interceptor durinference of the system extra magnition of the interceptor durinference of site, and need Part 811, 320 of extra extra leader and extra ext	51,040,000 High cost leadant management A High cost leadant in management aftermative compared to an interceptor laderative for the hydrogeologic is leapilat osst further hydrogeologic al equilation way research the administrum year. The system is non effective. Cast cond interease of extracted leadware is required.	\$56,000 6. M would continue for an interfinite for an (>100 years). at	Highest cast leachate management Highest cast leachate management alternative for direct leachate estimation and mitraceptor estimation and mitraceptor questionable than other direct leachate collection technologies
	Ash Stabilization	Ash full is stabilized and solidified and and a solidized and solidified cerner. like marits (monolihi) that immobilizes ash constituents, increase strength, and decreases permeability.	Ath ful is stabilized and solidified Stabilization process would result in a substantial increase in volume on site (typically 20 Stabilized/solidified asit monoth would minimize production of existing ash conserve a reasent solution and astronomes of certain trace conserving areasents from as 1.0 %, Benchi active conserving and solution and astronomes of certain trace conserving and and solution and decreases permeability.	Stabilized/solidified ash monotith would minimize production of existing ash contaminants such as aboun and sulfacts but concentrations of certain trace contaminants such as aclenium, musy increase with pH. Would reduce mass increases, such as aclenium, musy increase with pH. Would reduce mass trading are to Watsh Niver. Inverse amount of reduction and effect on dewngradient groundwater concentration would be difficult to predict. Long term monitoring would be required to evaluate effectiveness.	 55.000 15.000 15.0000 15.00000 15.00000 15.00000 15.00000 15.00000 15.000000 15.000000 15.000000 15.0000000 15.000000000	\$5,000 O & M costs would be e similar to those associated with a final cover.	55,000 INO State and the Capital cost is much too high cinniar to toose compared to other Hachate associated with a final management alternatives. cover.

1375 Alternatives Analysis Tables 2005_FINAL.xls Table 3-1 - Initial Screening

1 of 3

NATION RECOUNCY RECOUNCY

Closure							
Alternatives	Option	Description	Construction / Implementation Feastbility	Effectiveness	Relative Cost Capital	Annual O &M	Carry Forward to Modeling and Further Evaluation (Yes/No)
Leachate Management Alternatives (confinued)	Ash Removal and an Dorsal. Recycling at an Orf. Site Facility. o Beneficial Re-Use Beneficial Re-Use	Ash is excavated and transported to an appropriate landing, moved to appropriate states for rescring, or, appropriate states for rescring, or, Recycling may include incorporation Recycling may include incorporation corrent. (for use in agricultural setting as a source of minerals, or as flowable fill in slury form.	Externation involves standard construction equipment. Externation of saturated sh may require shoring, develuenting and use of reagine to tacker an mudata. Staturated sha therovari is lakely not technically or economically feasible. This alternative would likely require profiling of the sh wave for disposition an appropriate laddilly tertification of large volume users of mixed sh. Recycling may require grading or soming of sh. Based on prior testing, excavated ash from Pond D may not meet criteria for beneficial reuse.	Removal of ash is an effective means of source control provided that saurated at its removal-can ferencord of stantared at may be very official to do its depth below the water table. Removal of ash would result in granubater quality improvement and reduction of loading rate to the Wabsch River.	\$23,3,000,006 to \$3,4,000,000 set healther. Range of costs for managing and healther. Range of costs and healther. Range of costs and nony and overlunden reglatement. The set of the set of the set of the regulation overlunden reglatement. In the set of the set of the interast. Explain costs for the interast. Explaind costs for the interast. Explaind costs for the disposal or recycling may be disposal or recycling ma	Nome to \$5,000 as cost would be as cost would be as final cover if partial externation was performed.	NO Capital compar manage
	Landfal Reconstruction (Ash Excavation; (Ash Excavation; Leachate Collection System; Ash Replacement)	Ash is excavated and moved to the construction as a new unit to finith infittuation. Leachar generation. and offsite migration: separate ash from water table, and control ension.	Landfill reconstruction would require excavation and off-site disposal or relocation of all Li ash in Point DL As distorated above. Everation of statted ash it highly not technically not ecconomically feasible. Clean fill would have to be replaced to create a base for the fandfill at least 5 feet above the historical high water table. This option is not implementable simply based on very high estimated capital costs. Potential for implementable simply based on very high at new landfill in an area with impacted groundwater.	Landfill reconstruction could be an effective solution: however a viable method from to 16 feet powith water the would be medded for this option to be sentously considered effectiveness would be greatly reduced, particularly in terms of downgradient groundwater concentrations. if saturated that could not be removed. Capital risk is too high versus potential gain in effective latchate management.		high estimated capital teatial gain in effective tificant regulatory	NOT EVALUATED
Leachate Management and Management and the Deep Alluvial Aquifer	Containment Using an Impermeable Barrier Wall	An impernable vertical barrier wall, constructed of materials to minimize groundwater flow through the barrier, would be installed dowrgadient or surrounding Poud D.	A shirry wall may not be constinctable between Pond D and the Wahash River due to the A share a constraints and buried utilities. Installation of a sphere the wall may be constrained expending on depth. Another meable lattice wall requires an important but and the share and share a set on the <i>Surry Wall Surry</i> . Prepared by the key-in formation for effective barrier. Based on the <i>Surry Wall Surry</i> , prepared by the strong barrier and ship tests performed at the <i>Surry Wall Surry</i> . The strong barrier present at the upland portion of the site would not provide a good key-in large barrier wall.	An impermeable burnter wall would not be effective at the site since an impermeable key-in layer is not present in all areas.	NOT EVALUATED Due to ineffective application at the site. A vertical barrier wall is not implementable or effective for laechate management without a competent key-in layer.	: A vertical barrier x leachate n layer.	NOT EVALUATED
Source Control of the Deep Alluvial Aquifer	Groundwater Extraction from the Deep Alluvium		The area downgradient of Pond D is below the 100-year flood elevation and prone to flooding. A hydrauis analysis needs to be performed to model adding to the silucce water system and to evaluate compliance, with the NPDS permit for outfall #002. Bettraction of large volumes of groundwater would likely be necessary to affect groundwater flow in the deep alluvium.	System would have to be designed to writkinnd seasonal flooding of the Wabash Ware. Culterion of leadate and management through Pond B andror Pond C for versual discharge to the Wabash River via outila #002 would reduce concentrations in downgradient groundwater. but would not result in an et culotion feat-ande buggit to the river. May prevent ingradino of sahe vonstituents off site, and meet Part 811.320 zone of attenuation requirements, if property disigned.	5690,000 (0.5690,000) (0.58. Cost could increase substantially (2 to 5 times) if treatment of extracted groundwater is required.	\$52,000 O & M would continue for an indefinite period (>100 years).	VES VES allowind water extraction from the deep allowind water could effectively contain downgradion migration of ach constituents in the deep altovial aquifer.
Alternatives Alternatives	Geosynthetic Final Cover	Pund D is covered with a greesynthetic final cover to prevent direct contact. rectores infiltration of surface water, rectore leadnae generation, and provide cresion control.	Geosynthetic final covers are readily constructable and have been installed at other fly ash management facilities to reduce surface water infibration and leachang generation. The provide the supervise of the construction in norordnare with S1. MC Part 81. 13. 13. (generationare followed by 3) feet of final protective cover). Geosynthetic final emarcinals readily available throughout the L3. Limitations to overcome finaluke rating the fina grade to provert surface water from founding on the completed fill surface and to prote- neoff to the Websel River on the Daninge Cultection Pould (Puni C).	A geosynthetic fittal cover would effectively reduce surface water infiltration A result provide protection from Prand D. Additionally, the cover a would provide protection from resonate and prevent direct contact with ast. For This option does not address leaching from saurated ast. which a hydrogenologic investigations have identified as s significant component of the phydrogenologic investigations have identified as s significant component of the phydrogenologic investigations have identified as s significant component of the phydrogenologic investigations have identified as s significant component of the phydrogenologic investigations have identified as significant component of the phydrogenologic investigations have interval and its add alow would not result in robustion of downgradient groundwater concentrations: inwever, the cover would result in a net reduction in leachate loading to the Wabash River.	55,200,000 Lowest cost linal cover option for a 35 Lowest cost linal cover option for a 35 costs may decrease as suffice water costs may decrease as suffice water approximation of the state of the herought explored and fill estimates the reviser. It a local source for fill increase.	\$5,000 0.& M costs associated with manualing a 1 foot protective layer: maintaining reparting crosion damage.	VES The geosynthetic final cover will be evaluated as the base case for a Part 81.1.314 cover system. Capital cose 81.1.314 cover status of the possibility of the over status and note possibility of the over the may more the 811.314 tequirements.
	Compacted Clay Final Cover	Prind D is covered with a compacted clay final cover to provent direct contact, control infitration of surface water, reduce lastrate generation, and provide crossion control.	Compacted clay final covers are readily constructable and have been installed at other fly as management actilities to reduce surface water infiltration and leachate generation. A compacted clay final cover would be constructed in accordance with 35 IAC Far 81.131.44 (3) feet of compacted clay followed b) feet of final protective covers. A local source for covere gade compacted proviould have to be identified and may not be available. Similar limitations to overcome as a geosynthetic final cover.	A compared citay final cover would effectively reduce surface water filtration resulting in reduced tachate generation from Poud D. Additionally, similar to a geosynthatic over, the feay cover would provide protection from ensoins and provent direct context with a This option does not address iterating from saturated stat, which hydrogeologic investigations have identified as a significant component of leachate generation from Pood D. and The ad about work dur creatil in reduction of groundwater concentrations: however, the cover would result in a net reduction in leachate loading to the Wabash River.	55,500,000 Highest cost final cover option for a 15 IAC 811.314 cover system. When IAC 811.314 cover system. When compared days is not a cost competitive cover option.	\$5,000 & M costs (0 & M costs) associated with maintaining a 3 foot protective layer, vegetation and cepating crosion damage.	NO Highest cost final cover alternative for a Part 811.314 cover system. Additional capitat not warranted versus a geosynthetic final cover System.

Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3

Hutsonville Ash Management Facility - Unlined Ash Impou Ameren Energy Generating - Hutsonville, Illinois	sh Management 39 Generating - F	Hursonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure Ameren Energy Generating - Hursonville, Illinois	ndment (Pond D) Llosure			DATE: 7/18/05	CHKD BY: CAR/BRH (EIT 5/19/05)
Closure Alternatives	Option	Description	Construction / Implementation Feasibility	Effectiveness	Relative Cost Conited	Amund O & M	Carry Forward to Modeling and Further Footunion (Yoo/No)
final Cover Alternatives (continued)	Earthen Final Cover	Pond D is covered with final cover constructed from on-site earlien materials to prevent direct contact. materials of straface water, reduce laschare generation, and provide erosion control	An earther final cover could be readily constructed from on-site materials and earther in final cover will reduce surface water infiltration and lear covers have been installed a other type an management facilities in littoris to achieve site generation (no model). The surface that a overal covers the earther final cover would be constructed from a minimum of 3 feet of provides erokino and approxib the constructed from a minimum of 3 feet of terrhine materials (i.e. general fill) and dokynel for the contex strates erokino control approxib that of compared deal covert. The sare erother materials (i.e. general fills and dokynel) cortex strates water infilmation and provides erokino control and prevents direct contact with tash. The leadure generation. Lead sources for a general fills are valiable. Implementation of an down studies existing from strates dash with hydrogenogene leadure generation. Lead sources for general fills are available. Implementation of an down store dates erokino control and provers which hydrogenogene erother final cover would require approval of an adjusted standard from the FOB to seek line states in grown would near the are generation from the requirements of 31 AC 811.31.4. Similar limitations to overcome as a generation from the requirements of 31 AC 811.31.4. Similar limitations to overcome as a generation from the requirements of strate over which expressions have a generation from the requirements of strate over the cover would result in reduct genosymbetic final cover with respect to surface water.	An earlier final corer will reduce surface water infiltration and learnate 54, 200,000 correction from Pond D, and modeling suds: indiracted that over 10 lows cost find sover option. If the performance would approach that of compared day cover. The earthen core PCB approves an adjusted standard for provides reaction cornor provides resolution approach that of compared day cover. The earthen core PCB approves an adjusted standard for provides resolution approach provides resolution approach that of compared day cover. The earthen core PCB approves an adjusted standard for provides resolution to the adjusted standard for the provides resolution component of leachate from 33 IAC 811.314. Investigation tax and the adjusted as againstant component of leachate earthen from D and 1 used alone would not result in reduction of goundwater concentrations. Nowever, the cover would result in a net reduction in leachate loading to the Wabash River.		\$5.000 O.&. M. cosis O.&. M. cosis associated with maintaining vegetation and vegetation and terpairing erosion damage:	YES YES Construction of the lowest construction.
	Pozzolanic Fly Ash Final Cover	Foud D is covered with a pozzolanic fly saf final cover to prevent direct and account of prevent direct account account of surface venter, reduce lachate generation, and provide erosion control.	Pozalanic (ly sh final covers have been constructed at some fly sh management floctilities around the U.S. to rothce surface water influration and reduce leached generation. Thy shi would be muscle with stabilizing expense (e.g. him.: Portland corners, Class C Ity ash) to form a cement-like low permeability cover. A pozzolanic final cover used the constructed with 3 feer of pozzolanic (has mixture (Low Parmeability Lyarch followed by 3 feer of final protective cover (final Protective Layer), similar to a 35 MeC Plant 811.1314. Implementation da a pozzolanic final event en- ded and the transfer of a pozzolanic final event and culture and a strand or a pozzolanic final event and culture and and point dream and the CB to see keilef from the requirements of 35 MeC 811.314. Construction of spozzolanic final cover could potentially use (h) and ready or side in the fined ash point (Pound A) and result in a significant cost savings for materials.	A poszolanie fly ash final cover would effectively reduce surface water inrihitation and leachate generation from Pord D, provide crossion control, and prevent direct contact runts. This topic of does not address leaching from structured ash. which hydrogeologic investigations have identified as a significant component of leachate generation from Pord J. and it seed adore would not result in reduction of groundwate concentrations; however. the cover would result in a net reduction in leachate loading to the Wahsh River.	\$4.700,000 Mid-ange cost final cover option for a Mid-ange for the cover should be capital cost for the cover should be capital cost for the henefit of retaining an additional 110,000 yd ³ capacity in the lited ach impoundment.		YES White this alternative represents the White this alternative represents the ower system. It provides the benefit of creating additional caperity in the lited ash impoundment.
Surface Water Management Alternatives	Route Surface Water East Toward Wabash River	The grade of Pond D would be adjusted to promote gravity datinge of a adjusted the Wabath River.	Route Surface The grade of Pond D would be Technically and administratively feasible - the grade of Pond D could be readily adjusted This would be an effective surface water management option that could be Water East Toward adjusced to promote gravity drainage of for oute surface water toward the Wahash River. Can be constructed if adequate readily adjusted with a final cover. Water East Toward adjusced to promote gravity drainage of for oute surface water toward the Wahash River. Can be constructed if adequate readily adjusted to promote gravity drainage of for oute surface water toward the Wahash River. Surface water toward the Wahash source(s) of general fill are identified in clees proximity to the site.	This would be an effective surface water management option that could be readily integrated with a final cover.	SEE FINAL COVER OFTIONS Fill required for grade adjustment to towns surface water drainage is already included as part of the final cover estimates.	te surface water e final cover	NO Routing all surface water to the Wabash River would require excess fill.
	Route Surface Water West Toward Drahuge Collection Pood (Pood C)	The grade of Pond D would be adjusted to promore gravity drainage of surface water toward Pond C.	The grade of Pond D would be Technically and antimistratively feasible - the grade of Pond D could be readily adjusted This would be an effective surface water management option that could be used to pornoue gravity drainage of to route surface water rowards the Drainage Collection Pond (Pond C) similar to layout as readily integrated with a final cover. If combined with an earthen cover, auter toward Pond C. No. 3771. Can be constructed if adjusted <i>Collection Pond</i> . Proving y extended agreed on the readily adjusted This would be readily adjusted This would be readily adjusted by more gravity drainage of to route surface water nowards the <i>National Parinage Collection Pond</i> . No. 3771. Can be constructed if adjusted <i>Collection Pond</i> . Pond of the readily integrated with a material ponder ponder to the surface water nay have to be lined with a material ponder outor that addrawate for the surface water nay lave to be lined with a net contract of the ready been intervention of the collection Pond. No. 3771. Can be constructed in dows a collectivity in the surface water nay lave to be lined with a net contract of the could be readily adjusted for the set of the surface water nay lave to be lined with a net contract on voluent has a net of the set of the surface water nay lave to be lined with a net contract of the ready been intervent option would require test fill than number and the water over the surface water data ger from the to allow surface water data ger from the to allow surface water data ger from the to allow surface water data ger from the to a law from the total pond to a law from the total pond to a law from the surface water nay lawer to be lined with a net of the total pond total total pond total pond total total pond total pond total total pond pond total pond total pond total pond total pond	This would be an effective surface water management option that could be readily integrated with a final cover. If combined with an earthen cover, swales designed to route surface water may have to be inted with a geomethyane.	SEE FINAL COVER OPTIONS Fill required for gade adjusment to route surface water draimage is already included as part of the final cover estimates.	le surfàce water le final cover	NO NO all surface water to the Drainage Collection Pord would require access fill.
	Roate Surface Water East and West, Towards the Wabash River and the Drainage Collection Pond (Pond C)		The grade of Pond D would be Technically and administratively feasible - the grade of Pond D could be reality adjusted adjusted strong gravity drainage of to course varkers were invasited. For the grade of Pond D could be reality adjusted adjusted water sowater gravity drainage of to course varkers were invasited and the Water Water to climitate the need for proximity to the site. This surface water management option would expating the least automate fill.	This would be an effective surface water management option that could be recally increased with a final cover. If combined with an earthen cover, wates designed to route surface water may have to be lined with a geomembrane.	SEE FINAL COVER OPTIONS SEE FINAL COVER OPTIONS fill optimed for grading and under the drainage Inwards the Drainage Collection Pont and/or the Wabash River is absorb included as a part of the final cover strainasts. Actual costs would fluch be best han months surface water exclusively towards the Wabash River or the Drainage Collection Pond.	te surface water n Pout audor the to the final cover less than routing 'abash River or the	YES Aris sufface water management alternative represents the fast amount of in needed to note sufface water of all fine and to factor independed within the final cover alternative estimates.

Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3

1375 Atternatives Analysis Tables 2006_FINAL.xls Table 3-1 - Initial Screening

3 of 3

Nouna, Risource Titheouco

Table 3-2 - Areal Extent and Volumes of Unsaturated and Saturated Ash In Pond D Leachate Management and Final Cover Alternatives Report NRT PROJECT NOL: 1375/6.1 Hutsonville Ash Management Facility BY: GRL/EIT CHKD BY: CAR (EJT 5/19/05) Ameren Energy Generating - Hutsonville, Illinois DATE: 7/18/05 DATE: 7/18/05

Site Specific Parameters	Unit	Unlined Ash Impoundment (Pond D)
Total Volume of Ash	СҮ	830,000
Volume of Unsaturated Ash	CY	550,000
Volume of Saturated Ash	СҮ	280,000
Areal Extent of Ash	SF	966,000
	ACRES	22
Areal Extent of Saturated Ash	SF	200'000
	ACRES	18
Thickness of Unsaturated Ash	FT	11-31
Thickness of Saturated Ash	FT	5-14
Depth to Bottom of Saturated Ash	FT	11-31

Source Notes:

1. Total estimated area for saturated ash: areal extent ~ 790,000 ft², average thickness ~ 9.5 ft, average depth to bottom of saturated ash ~ 25 ft. 2. Based on above estimates: $280,000 \text{ yd}^3$ saturated ash (790,000 ft² x 9.5 ft).

2. Dased will above estimates: zou, who ye is a turated asit (790,000 H x 9.3 H).

3. Total estimated area for ash: areal extent ~ (22 acres) 966,000 ft², average thickness estimated from Geoprobe boring logs (20.9 feet).

4. Based on above estimates: 750,000 yd³ ash (966,000 ft² x average thickness) + 80,000 yd³ transferred in 2004 = 830,000 yd³ 5. Total ash volume includes unsaturated ash (550,000 yd³) and saturated ash (280,000 yd³).

CY = Cubic yards SF = Square Feet

Table 3-3 - Final Cover Alternatives Material Balance Analysis Leachate Management and Final Cover Alternatives Report Hutsonville Ash Management Facility - Unlined Ash Impoundment (Pond E	Table 3-3 - Final Cover Alternatives Material Balance Analysis Leachale Management and Final Cover Alternatives Report Hutsonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure	A nalysis nt (Pond D) Closure				NRT PROJECT NO.: 1375/6.1 BY: CAR CHKD BY: EJT 5/19/05	S0/6
Ameren Energy Generating - Hutsonville, Illinois	tsonville, Illinois					DATE: 7/18/05	
			•		Final Cover Alternative	ternative	
Fill Utilization	Fill Origin	Calculation	Unit	Clay	Pozzolanic	Geosynthetic	Earthen
Establish Grade	Fly Ash Stockpile ³ (V _{as})	[A] - Assumption 8	СҮ	50,500	50,500	50,500	50,500
		[B = L - (A + C + D + E + F +					
	Additional Imported Fill ⁴	[G + H +]]	СҮ	120,700	120,700	206,100	206,100
	Beneficial Reuse Ash	[C] - Assumption 9	СҮ		-	20,000	20,000
Low Permeability Layer ⁵ (V _{fc})	Clay	[D] - Assumption 5	СҮ	105,400	:	-	-
	Cement	[E] - 5% of Pozzolanic Cover (dry weight basis)	CY	ł	2,500		1
	Flv Ash-Pozzolanic Mix	[F = D - E]	2	:	000 CU1		
Einel Brotostine Lanare (VV)	Danaficial Dance Ach		; ;				
FIRM FROIDCUIVE LAYER (V pi)	Beneficial Keuse Asn	[u] - Assumption 9	٦	20,000	70,000		
	Imported Rooting Zone Soil	[H = Assumption 6 - G - I]	Сү	85,400	85,400	105,400	87,800
	Sand Drainage Layer ⁷	[1] - Assumption 7	СY	;	:	:	17,600
Total Imported Rooting Zone		[J = H + I]	СҮ	85,400	85,400	105,400	105,400
Total Fill Volume for Pond D ¹		[K] - Assumption 1	СҮ	382,000	382,000	382,000	382,000
Assumptions and References: 1. The <i>Total Fill Volume for Pond D</i> w included an estimate of capacity below:	as calculated from design grades with r standing water of $5,000$ yd 3 ; the calcula	Assumptions and References: 1. The Total Fill Volume for Pond D was calculated from design grades with minimum 5% final cover slope for drainage and the existing grades established by aerial survey performed by Connor & Connor on April 14, 2005, and included an estimate of capacity below standing water of 5.000 yd ³ : the calculated Total Fill Volume for Pond D was approximately 382.000 yd ³ . All volume calculations were performed using AutoCad LandDesk Development	e and the existi proximately 382	ng grades establishe 2.000 yd ³ . All volun	d by aerial survey perfo ne calculations were pe	rmed by Connor & Connor o rformed using AutoCad Land	n April 14, 2005, and IDesk Development

software.

2. Final cover material estimates are included as part of estimated volume of fill to make Pond D grades.

3. All material halance estimates assume the ash stockpile will be used as fill beneath the final cover.

4. Additional imported fill is required if $V_{ss} + V_{fc} + V_{pl} < 357,000 \text{ yd}^3$.

5. Low permeability layer volume (105,400 CY) estimated assuming an approximate 22 acre cover area with 3' thick cover: clay and pozzolanic final covers only.

6. Final protective layer volume (105,400 CY) estimated using an approximate 22 acre cover area with 3' thick cover: required for ALL final cover alternatives.

7. For the earthen cover, the final protective layer consists of: 1) a 6" sand drainage layer, and 2) a 2.5' rooting zone layer.

8. Fly ash stockpile volume (50,500 CY) estimate calculated from elevation 453 feet and above.

9. Reneficial ash volume estimated hy Hutsonville Power Station personnel at approximately 20.000 yd³.

CY = Cubic yards

245

Table 3-4 - Comparison of Recommended Mix Designs to Performance Goals and Cost Sensitivity AnalysisLeachate Management and Final Cover Alternatives ReportHutsonville Ash Management Facility - Unlined Ash Impoundment (Pond D) ClosureAmeren Energy Generating - Hutsonville, Illinois	<i>ommended M</i> Il Cover Altern acility - Unlin utsonville, Illir	ix Designs to Perform atives Report ed Ash Impoundment iois	<i>tance Goals and Cost</i> (Pond D) Closure	Sensitivity Analysis	NRT PROJECT NO.: 1375/3.1 BY: CAR CHKD BY: BRH (EJT 5/19/05) DATE: 7/18/05	
			Performance Goals (Substantially consistent with the Part 816 standards)	tially consistent with the Pa	irt 816 standards)	Cost Sensitivity Analysis
Recommended Pozzolanic Final Cover Mix Design	Net Capacity Created in Pond A	Average Final Cover Permeability ³ Goal: 1 x 10 ⁷ cm/sec	Unconfined Compressive Strength UCS (psi) Goal: 150 psi @ 84 days	Field Constructability Goal: YES	Leaching Performance Goal: Leachate Concentrations < Class I Groundwater Quality Standards	Capital Costs
Pozzolanic Final Cover - Mix Design I (Pond A fly ash and cement)	100,480 CY	6.5 x 10 ⁻⁷ cm/sec	305	YES	All Parameters < Class I Groundwater Quality Standards	\$5,333,000
Pozzolanic Final Cover - Mix Design 2 (Pond A fly ash and cement)	100.480 CY	4.9 x 10 ^{.6} cm/sec	165	YES	AN	\$4.533.000
Pozzolanic Final Cover - Mix Design 9 (Pond A fly ash, on site native soil, and cement)	85,408 CY	1.6 × 10 ^{°6} cm/sec	161	YES	All Parameters < Class I Groundwater Quality Standards with the exception of cadmium detected slightly above the Class I standard at 0.01 mg/L	\$4,864,000
Pozzolanic Final Cover - Mix Design 10 (Pond A fly ash, on site native soil, and cement)	85,408 CY	NA	380	YES	NA	\$5,914,000
Pozzolanic Final Cover - Mix Design 14 (Pond A fly ash, FGD filter cake, and cement)	70.336 CY	1.3 x 10 ⁻⁷ cm/sec	1.110	High initial strength and tendency to adhere to the sides of the feed hoppers present field construction challenges.	All Parameters < Class I Groundwater Quality Standards	\$5.316,000

General Notes:

1. See Section 3.6 for a description of the pozzolanic final cover mix designs.

NA: Not Analyzed
 See VFL Technology Corporation Table 3 for Mix Designs, Strength and Permeability Data (Appendix C-1).
 FGD: Fluidized gas desulfurization scrubber sludge

1 of 1

Table 4-1 - Selected Alternatives for Groundwater Flow and Transport Modeling Leachate Management and Final Cover Alternatives Report

Hutsonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure Ameren Energy Generating - Hutsonville, Illinois NRT PROJECT NO.: 1375/6.1

BY: CAR CHKD BY: BRH

DATE: 7/18/05

	Model Scenario	Final Cover Alternative (CO)		Leachate Extraction Option (LEO)
			Permeability, K	
		Layering Bottom to Top, Thickness (ft)	(cm/sec)	LEO Description
	CO-1	3 ft earth	NA	NONE
n e e	CO-2	Geosynthetic Layer, 3 ft earth	2.00E-11	NONE
Cover native arios	CO-3a	3 ft Pozzolanic Layer, 3 ft earth Layer	1.00E-07	NONE
Final Cover Alternative Scenarios	CO-3b	3 ft Pozzolanic Layer, 3 ft earth Layer	1.00E-06	NONE
SAT	CO-3c	3 ft Pozzolanic Layer, 3 ft earth Layer	1.00E-05	NONE
	CO-2, LEOa-1	Geosynthetic Layer, 3 ft earth	2.00E-11	11 Extraction Wells (EAST); 1000 ft TRENCH (SOUTH)
s te	CO-3c, LEOa-1	3 ft Pozzolanic Layer, 3 ft earth Layer	1.00E-05	11 Extraction Wells (EAST); 1000 ft TRENCH (SOUTH)
aric	CO-2, LEOb-1	Geosynthetic Layer, 3 ft earth	2.00E-11	11 Extraction Wells (EAST); 1000 ft TRENCH (SOUTH)
Leachate Scenarios	CO-3c, LEOb-1	3 ft Pozzolanic Layer, 3 ft earth Layer	1.00E-05	11 Extraction Wells (EAST); 1000 ft TRENCH (SOUTH)
1 2 2	CO-2, LEOa-2	Geosynthetic Layer, 3 ft earth	2.00E-11	3200 ft TRENCH (EAST and SOUTH)
SS SE	CO-3c, LEOa-2	3 ft Pozzolanic Layer, 3 ft earth Layer	1.00E-05	3200 ft TRENCH (EAST and SOUTH)
5 ×	CO-2, LEOb-2	Geosynthetic Layer, 3 ft earth	2.00E-11	3200 ft TRENCH (EAST and SOUTH)
nai	CO-3c, LEOb-2	3 ft Pozzolanic Layer, 3 ft earth Layer	1.00E-05	3200 ft TRENCH (EAST and SOUTH)
ombined With Alternatives	CO-2, LEOa-3	Geosynthetic Layer, 3 ft earth	2.00E-11	1000 ft TRENCH (SOUTH)
δĀ	CO-3c, LEOa-3	3 ft Pozzolanic Layer, 3 ft earth Layer	1.00E-05	1000 ft TRENCH (SOUTH)
Ŭ E	CO-2, LEOb-3	Geosynthetic Layer, 3 ft earth	2.00E-11	1000 ft TRENCH (SOUTH)
Cover	CO-3c, LEOb-3	3 ft Pozzolanic Layer, 3 ft earth Layer	1.00E-05	1000 ft TRENCH (SOUTH)
⁻ inal Cover Combined Wit Management Alternatives	CO-2, LEOa-4	Geosynthetic Layer, 3 ft earth	2.00E-11	2500 ft TRENCH (EAST and SOUTH)
Final Mana	CO-3c, LEOa-4	3 ft Pozzolanic Layer, 3 ft earth Layer	1.00E-05	2500 ft TRENCH (EAST and SOUTH)
iπ≥	CO-2, LEOb-4	Geosynthetic Layer, 3 ft earth	2.00E-11	2500 ft TRENCH (EAST and SOUTH)
	CO-3c, LEOb-4	3 ft Pozzolanic Layer, 3 ft earth Layer	1.00E-05	2500 ft TRENCH (EAST and SOUTH)

Final Cover Alternatives:

CO-1: Final Cover Alternative 1 - Earthen Final Cover Scenario

CO-2: Final Cover Alternative 2 - Geosynthetic Final Cover Scenario

CO-3a: Final Cover Alternative 3a - Pozzolanic Fly Ash Cover Scenario (K ~ 1.0 x10⁻⁷ cm/sec)

CO-3b: Final Cover Alternative 3b - Pozzolanic Fly Ash Cover Scenario (K ~ 1.0 x 10⁻⁶ cm/sec)

CO-3c: Final Cover Alternative 3b - Pozzolanic Fly Ash Cover Scenario (K ~ 1.0 x 10⁻⁵ cm/sec)

Leachate Management Alternatives:

LEO-1: Leachate Extraction Option 1 - Groundwater extraction (east) combined with an interceptor drain/trench (south)

LEO-2: Leachate Extraction Option 2 - Interceptor drain/trench (east and south)

LEO-3: Leachate Extraction Option 3 - Interceptor drain/trench (south only)

LEO-4: Leachate Extraction Option 4 - Interceptor drain/trench (east and south), 700 feet shorter along east alignment a: Indicates "shallow" trench design

b: Indicates "deep" trench design

Table 4-2 - Groundwater Flow and Transport Model Results	Leachate Management and Final Cover Alternatives Report	
Table 4-2 - Groundwater Flo	Leachate Management and Fir	

Hutsonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure Ameren Energy Generating - Hutsonville, Illinois

CHKD BY: BRH NRT PROJECT NO.: 1375/6.1 DATE: 7/18/05 BY: CAR

		Evaluati	ion of Modeling Scenaric	tion of Modeling Scenarios Versus Effectiveness Criteria	Criteria	
		Effectiveness Criteria No. 1: Co Effectiveness Criteria No. 2: Tir	Compliance with Class I Groundv Time Frame [yrs.]	Compliance with Class I Groundwater Quality Standard for Boron (2 mg/L) [YES/NO] / Time Frame [yrs.]	n (2 mg/L) [YES/NO] /	
	Model					Carry Forward to Assembly
	Scenario	Downgradient	Downgradient	Downgradient	Downgradient	of Closure Alternatives ²
		MW-6	MW-7	MW-8	MW-11R	(YES/NO)
	co-1	DRY / 4	ON	ON	YES / 16.0	YES
Ð	CO-2	DRY / 4	ON	ON	YES / 15.3	YES
voC vits pring	CO-3a	DRY / 4	ON	ON	YES / 15.4	YES
eru uje	CO-3b	DRY / 4	ON	Q	YES / 16.1	YES
tia DM	CO-3c	DRY / 4	ON	ON	YES / 16.1	YES
	CO-2, LEOa-1	DRY / 3	YES / 11.8	YES / 8.7	YES / 10.3	NO
	CO-3c, LEOa-1	DRY / 3	YES / 12.0	YES /8.7	YES / 10.3	NO
ed: Dha	CO-2, LEOb-1	DRY / 3	YES / 10.2	YES / 8.5	YES / 8.8	NO
	CO-3c, LEOb-1	DRY / 3	YES / 10.3	YES / 8.5	YES / 8.9	NO
	CO-2, LEOa-2	DRY / 3	YES /5.3	YES / 3.7	YES / 9.9	ON
	CO-3c, LEOa-2	DRY / 3	YES /5.3	YES / 3.7	YES / 9.9	NO
	CO-2, LEOb-2	DRY / 3	YES / 6.8	YES / 3.3	YES / 8.6	ON
	CO-3c, LEOb-2	DRY / 3	YES / 6.9	YES / 3.3	YES / 8.6	NO
	CO-2, LEOa-3	DRY / 3	ON	ON	YES / 9.6	YES
	CO-3c, LEOa-3	DRY / 3	ON	ON	YES / 10.2	YES
	CO-2. LEOb-3	DRY / 3	ON	ON	YES / 8.8	ON
	CO-3c, LEOb-3	DAY / 3	ON	NO	YES / 8.9	NO
	CO-2, LEOa-4	DRY / 3	YES / 5.3	YES / 4.0	YES / 9.9	YES
	CO-3c, LEOa-4	DRY / 3	YES / 5.3	YES / 4.0	YES / 10.0	YES
	CO-2, LEOb-4	DRY / 3	YES / 6.9	YES / 3.5	YES / 8.6	NO
	CO-3c, LEOb-4	DRY / 3	YES / 6.9	YES / 3.5	YES / 8.6	NO

Final Cover Alternatives:

CO-2: Final Cover Alternative 2 - Geosynthetic Final Cover Scenario CO-1: Final Cover Alternative 1 - Earthen Final Cover Scenario

See Appendix D for groundwater transport modeling results.
 Section 4.3.3 provides an explanation of which modeling scenarios

Notes:

carried forward to assembly of the closure alternatives.

CO-3a: Final Cover Alternative 3a - Pozzolanic Fly Ash Cover Scenario (K ~ 1.0 x 10⁷ cm/sec)

CO-3b. Final Cover Alternative 3b - Pozzolanic Fly Ash Cover Scenario (K ~ 1.0 x 10⁶ cm/sec)

CO-3c: Final Cover Alternative 3c - Pozzolanic Fly Ash Cover Scenario (K \sim 1.0 x 10 5 cm/sec)

Leachate Management Alternatives:

LEO-1: Leachate Extraction Option 1 - Groundwater extraction (east) combined with an interceptor drain/trench (south)

LEO-2: Leachate Extraction Option 2 - Interceptor drain/trench (east and south)

- LEO-3: Leachate Extraction Option 3 Interceptor drain/trench (south only) LEO-4: Leachate Extraction Option 4 Interceptor drain/trench (east and south). 700 feet shorter along east alignment a: Indicates "shallow" trench design
 - b: Indicates "deep" trench design

Nimpari Nimpari Ticonoco

Table 5-1 - Closure Alternatives Cost Summary Leachate Management and Final Cover Alternatives Report Hutsonville Ash Management Facility - Unlined Ash Impou		ves Report Ash Impoundment (Pond D) Closure		NRT PROJECT NO.: 1375/6.1 BY: CAR CHKD BY: EJT DATE: 7/18/05
Ameren Energy Generating - Hutsonville, Illinoi				
			Cumulative Capit	Cumulative Capital and O & M Costs
Closure Alternative	Capital Costs	Annual O & M Costs	5 Year Compared to Today's Dollars	30 Year Compared to Today's Dollars
Closure Alternative No. 1: Geosynthetic Final Cover with East and South Interceptor Drain/Trench, and Deep Alluvial Aquifer Groundwater Extraction	\$6,840,000	\$104,000	\$7,360.000	\$9,960,000
Closure Alternative No. 2: Earthen Final Cover With South Interceptor Drain/Trench	\$4,660,000	\$35,000	\$4,835,000	\$5.710.000
Closure Alternative No. 3: Earthen Final Cover	\$4,200,000	\$5,000	\$4,225,000	\$4,350,000
Closure Alternative No. 4: Pozzolanic Fly Ash Final Cover ²	\$4.530.000	\$5.000	\$4,555,000	\$4,680,000
General Notes:				

General Notes:

See Section 5.0 for a description of the closure alternatives cost summary.
 Capital costs for Closure Alternative No.4: Pozzolanic Fly Ash Final Cover based on cost data for Mix Design 2 provided by VFL technology Corporation (Appendix C-2).

Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3

1 of 1

1375 Atternatives Analysis Tables 2005_FINAL.xls Table 5-1 Final Cost Summary

NATIBAL RESOURCE DECIMINENCE

Leachate Managem Hutsonville Ash Ma Ameren Energy Ger	Lacadate Management and Final Covernments Lacadate Management and Final Covern Alternatives Report Hussonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure America Energy Generating - Hussonville, Illinois	ond D) Closure			BY: CAR CHKD BY: BRH DATE: 7/18/05
	Closure Alternative No. 1	Closure Alternative No. 2	Closure Alternative No. 3	Closure Alternative No. 4	
Criteria	Geosynthetic Final Cover with East and South Interceptor Drain/Trench. and Deep Alluvial Aquifer Groundwater Extraction	Earthen Final Cover With South Interceptor Drain/Trench	Earthen Final Cover	Pozzolanic Fly Ash Final Cover	Evaluation Criteria Summary
Overall Protection of Human Health & the Environment	Alternative No. 1 protects Human Health and the Environment of sak constituents to assume to ask and the Environment of sak constituents to groundwater via infiltration of surface water. The leachate management and groundwater affected by components of this attenative prevent groundwater affected by ask leachate and ask POCS from discharging to the Wabash River or migrating off-site: thus protecting the inter and potential downgradient groundwater receptors pursuant to Class I groundwater quality standards.	Alemative No. 2 proters Human Health and the Environment of similing direct consist exposure to asia not educing baching of ash constituents to groundwater via infiltration of surface water. The lackture mangement component of this alternative prevents groundwater affected by ash leadate from migrating off-site to the south; thus protecting potential downgradient groundwater receptors.	Alternative No. 3 protects Hurrian Health and the Environment by himiting direct consate regrous the so ash and the Environg Baching of ash constituents to groundwater via infiftration of surface water. The groundwater monitoring program would be utilized to ensure potential downgradient groundwater receptors are not impacted.	A pozodanic fly ash final cover would provide similar to equivalent protection to human hashth and the environment as each of the other final covers proposed in Alternatives 1 to 3.	to Each alternative is protective of human health and the submoment. Specifically, each alternative effectively imig- direct contact exposure via a final landfil cover and protects potential downgradent groundwater (exports by capturing of monitoring the groundwater (exports of potential No. 1 would likely provide the greatest protection for potential downgradent leachate and groundwater extraction.
Short & Long Term EffectAner (Risk Analysis Implementation)	Short Term - This alternative would immediately limit direct via surface reports to ash and ordene learling also norsithents via surface water influstion: improvements in downgradient groundwater quality (boton < 2 mg/J) should be observed a term - improvement of groundwater quality may be destread downgradient monitoring wells within 4 to 5 years Long Term - improvement of groundwater quality may be groundwater ettraction could be required indefinitely until groundwater ettraction could be required indefinitely until groundwater ettraction could be required indefinitely until mass of a constituents completely leaches from saturated and required. Impoundment cover would have to be maintained indefinitely to limit direct contact exposure.	Short Term - This alternative would immediately limit direct and ancet reports to ash and cure leaching or alt constituents yia surface water infiltration; improvements in downgadiant groundwater quality along the south impoundment boundary will mound any technologic and within 5 years. Long Term - Improvement of groundwater quality is not expected along the east improvement of groundwater quality is not expected along the east improvement however; improvement of groundwater quality may be observed at MW-11k within approximately 10 years (courth boardery) mass of sat constituents completely leaches from stattarde ash to groundwater. Extended groundwater monitoring would be required. Improvement of groundwater monitoring would be required. Impoundment offer conduct exposure.	Short Term - This alternative would immediately limit direct order exports to asti and reduce teaching and constituents via surface water infiltration. Long Term of ash constituents groundwater quality is not expected along the east impoundment burderay (externels in groundwater quality may be observed involved. It is groundwater quality may be observed in MW-11R within 16 years (south boundary). Extended groundwater monitoring would be required. Impoundment over would have to be maintained indefinitely to limit direct contact exposure.	Short Term - A pozzolarie (hy ash final cover would mediately fining dreret consure texposure to ash and reduce lesching of ash constituents via surface water influation. Long Term - Ingrovement of groundwater quality is not expected impoundment and the Wabah River; however; impoverent of impoundment and the Wabah River; however; impoverent of groundwater quality may be observed at MW-11R within approximately 16 years (south beundary). Extended groundwater monitoring would be required. Impoundment cover would have to be maintained indefinitely to limit direct contact exposure.	III Each alternative could provide both short and long term are effectiveness. Alternatives No.1 and 2 effectiveness. Integes 6 are goundwater and/or leachan collection via downgraden interceptor drainforceles and/or wells to capture the affecter interceptor drainforceles and/or wells to capture the affecter for goundwater and bring the site intro compliance at interceptor and bring the site intro compliance at of farms. Alternative Nos. 3 and 4 may provide similar long of farms. Alternative Nos. 1 would provide the greatest short-term effectiveness.
Ease of Implementation		For an carthen final cover, an adjusted standard from the Illinois Car and earlievent (shower), earlien to overs have been used for feature of several (ty ash impoundment facilities throughout Illinois. Contractors and materials are locally authole for construction of an eardnen over. Similar to Alternative No. 1, contractors and materials for construction of the interceptor drain/trench system are readily available.	Similar to Alternative No. 2: an adjusted standard from the lineia PCB would be required to construct an earlien cover. However, earlien covers have been used for closure of several fly ash impoundment facilities throughout Illinois. Contractors and materials are iterally available for construction of an earlien cover.	Similar to Alternative No. 3, an adjusted standard from the limion FOB would be required to construct a pazohanic fry ach futal cower. A level of effectiveness would likely have to be demenstrated to the lifnois PCB before full-scale construction - this could require additional field scale testing. Commetors and materials are available for construction of a pozolanic fly ach cover.	Each alternative may require additional cvaluation prior for implementation. A programmer by as final cover (Alternative No. 4) would fixely require additional fixed study prior to fixed scale construction. Alternative No. 1 would require a pump ter- prior to fixed design. Alternative No. 2 requires the lease amount of study prior to implementation.
Performance / Reliability / Potential Impacts	A gensynthetic final cover would reduce teaching of ash constituents to groumwater via surface water infiltration. The interceptor drainforench system would rely on careful design equipment performance, and proper maintenance. Interceptor effects systems have demonstated reliability in a wariety of emrironmental applications. Groundwater extraction systems and maintenance. Alternatives No. 1 would bring Pond D anion and maintenance. Alternatives No. 1 would bring Pond D anion compliance with the Part 811 regulations in the shortest proposed for all of the alternatives. Potential for adverse proposed for all of the alternatives. Potential for adverse environmental affects is minimal to non-existent.	Similar to a geosynthetic final cover, an euchen final cover surface water infiltration. Alternative No. 2 is not spected to meet the Class I forundwater Volary Standard along the east fifther and MW-8) inpoundment houndary along the Watsh River without an adjusted standard. The interceptor data/trename, and proper maintenance. Interceptor trench systems have demonstrated reliability in a variety of environmental applications. Potential for adverse environmental affects is minimal.	Similar to a geosynthetic final cover, an earthen final cover sound reduce teaching of shit or constituents to groundwater via surface water infiltration. Alternative Mo. 3 is not expected to meet the Class I Groundwater Quality Standards and MW-3 indoundrent houndary without an adjusted standard. However, the Class I Groundwater Quality Standards standard. However, the Class I Groundwater Quality Standards within approximately 16 years without lacchate collection. The potential for advess environmental affects is minimal.	Similar to an earthen final cover, a pozzołanie (hy ach final cover would reduce facching of a sha constituents to groundwater via surface water infiltration. This alternative will likely have similar performance as Chosure Alternative No. 3 (Class I Conundwater Quality Standards may be met at the south impoundment boundary (MW-11R) within appoximately 16 parss). Gatar O & M and up-front fact hasting my be required to assure performance and redinking of a pozzalme fly as to ever. The potential for a dverse environmental affects is minimal with proper design of the pozzolamic fly ach mixture.	Performance of Alternatives 1 and 2 would be enhanced the installation of the interceptor diabracenesh leader collection system. Each alternative could be reliable if properly designes constructed and maintained. Alternative No. 1 onuld provide system is properly operated and maintained. Historically, granthouser extraction systems are difficul to operate and maintaino over long periods of time - reliability could be an issee for Alternative No. 1.
1375 Alternativos Analy Table 5.2 Dealided Anal	1375 Alternatives Analysis Tables 2005_FINAL_xis Table 5-2 Detailed Analysis/2006		1 of 2		09-1, Exhibit 3

NRT PROJECT NO.: 1375/3.1

Table 5-2 - Detailed Analysis of Closure Alternatives

Table 5-2 - Detailed Analysis of Closure Alternatives Leachate Management and Final Cover Alternatives Report Hursonville Ash Management Facility - Unlined Ash Impoundment (Pond D) C
--

NRT PROJECT NO.: 1375/3.1 BY: CAR CHKD BY: BRH DATE: 7/18/05

		-Eļį	eçetşenic Filin	g - Received	Glerks' Office,
DATE: 7/18/05		Evaluation Criteria Summary			Atom alternative can proceed any gain regration y approach the hitmain set of a source any provide a display are adjusted standards if of the littinois PCB prior to approval. Alternatives No. 1 work Pursuit of adjusted standards for Alternatives 1.3 and may be warranted based on the significant cest savinger plant enhancements these alternatives may provide.
	Closure Alternative No. 4	Puzzolanic Fly Ash Final Cover	completed in a single construction of a possibility of a possibility of a possibility as the possibility of the possibility as final cover would have to be maintained indefinitely.	It plasts capability and way and way and way and can the construction of a porzodanic (hy sati over versus a lower capital - yet cquality protective final cover (e.g. carthen final cover, needs to be evaluated with respect to additional capacity future could be created for fly ash in Pond A for enhancement of future plant operations.	Similar o Memative No. 3, appresed sarrateriate from the filmois PCB would likely be required for the alternate final cover to seak relief from Part 811 and 814 expuirements for alternate cover construction. In exclusion of busical groundwater quality standards. Construction of this alternative would be subject to filmois. EPA review and approval. Regulatory precedent does exist for construction of final cover systems using similar technology (35 IAC Part 816).
	Closure Alternative No. 3	Earthen Final Cover		Lowest cost cloauce alternative. Low to medium risk for durional tost depending on adjusted standards approved by the Illinois FCB and behavior of downgradient migration of goundwater affected by ash leachate over time.	Adjusted standards from the Illinois PCB would likely be found for Ahemative No. 3 for: 1) alternative cover construction to seek relief from the Part 811 requirements. 2) relief from Socion 811.309 and 814.302(h)(1) for no lachdate construction 2) adjusted perundwater and approval pursuant to Section 311.320. Construction of this alternative would be subject to Illinois EPA review and approval.
nd D) Closure	Closure Alternative No. 2	Earthen Final Cover With South Interceptor Drain/Trench	Construction of Alternative No. 2 could be completed in a single. Construction of Alternative No. 3 could be completed in a single teacturction season. Startup of the interceptor enerthdrain construction season. The authen final cover would have to be teachane could could be performed indefinitely (>100 years). Maintenance of the final cover and extraction of affected groundwater would be performed indefinitely (>100 years).	Lower cost clasure alternative that incorporates an earthen funal cover with a south interceptor drain/trench. Low to medium risk, the additional cost depending on adjusted standards approved by the Ellinois PCB.	Adjusted standards from the Illinois PCB would likely be required for Alternative No. 2 for: 10 atternative cover construction to seek relief from the Section 811.314 requirements, and 2) adjusted groundwater quality standards pursuant to Section 811.320. Construction of this alternative would be subject to Illinois EPA review and approval. Modifications of the plants NPDES permit may be required to accommodate discharge of collected groundwater through the existing ash sluice water system and outfall #002.
Leachate Management and Final Cover Alternatives Report Hutsonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure Ameren Energy Generating - Hutsonville, Illinois	Closure Alternative No. 1	Geosynthetic Final Cover with East and South Interceptor Drain/Trench, and Deep Alluvial Aquifer Groundwater Extraction	Construction of Alternative No. 1 could possibly be completed at anige construction season. Starmy of the interceptor ternohydrain leachate collection system and the deep alluvial groundwater extraction system could begin within one year. Animetenace of the final cover would be performed indefunely (>100 years). Maintenance of the relation vould be performed until concentrations of stat constituents decrease to Class I groundwater quality standards.	Highest cost closure alternative. Low risk for additional cost as the goosymptic final cover combined with the interceptor durativersch and goundwater cutaction system wile fifterway prevent downgradient migration of groundwater affected by ach leachate.	Alternative No. 1 would not require adjusted standards for leachaire collection and cap design with the Illinois PCB to importent. Construction of this alternative would be subject to Illinois PDA review and approval. Modifications of the pharis NPDES permit may be required to accommodate discharge of optiened and outfall #002. This alternative would fikely have relatively low difficulty to gain regulatory acceptance.
Leachate Manageme Hutsonville Ash Mai Ameren Energy Gen		Criteria	pletion	Cost	Institutional Requirements

General Notes: 1. See Section 5.0 for a description of the detailed analysis of alternatives.

1375 Alternatives Analysis Tables 2005_FINAL.xls Table 5-2 Detailed Analysis2005

APPENDIX A

ł

SUPPLEMENTAL SITE INVESTIGATION APPENDICES

APPENDIX A-2

MONITORING WELL COMPLETION REPORTS AND ABANDONMENT LOG

.

.

M-1

ELEVATION 456.5

PIPE & SCREEN

7'	pipe screen	459.5	-	452.5
5'	screen	452.5	-	447.5

BACKFILL MATERIALS

concrete grout collar	456.5 - 455.0
bentonite seal	455.0 - 453.5
1/8" gravel pack	453.5 - 447.4

M-2

ELEVATION 453.3

PIPE & SCREEN

8' pipe	456.3 - 448.3
13' screen	448.3 - 435.3
BACKFILL MATERIALS	
concrete grout collar	453.3 - 451.3
bentonite seal	451.3 - 449.3
1/8" gravel pack	449.3 - 431.8

NOW IN OUR THIRTH THAT AR OF MAXIET

1525 SOUTH SIXTH STREET = SPRINGFIELD, ILLINOIS 62703-2886 = 217/788-2450 = TWX 910-242-0519

SPRINGFIELD, ILLINOIS = PEORIA, ILLINOIS = ROCKFORD, ILLINOIS

M-3

ELEVATION 452.1

PIPE & SCREEN

7.9'	pipe screen	455.6 -	- 447.7
5'	screen	447.7 -	- 442.7

BACKFILL MATERIALS

concrete grout collar	452.1 - 450.1
bentonite seal	450.1 - 448.1
1/8" gravel pack	442.7 - 448.1

M-4

ELEVATION 454.4

PIPE & SCREEN

8'	pipe	457.4 - 449.4
7.5'	screen	449.4 - 441.9

BACKFILL MATERIALS

concrete grout collar	454.4 - 452.4
bentonite seal	452.4 - 450.4
l/8" gravel pack	450.4 - 441.0

NOW IN OUR THIRTH THAT AR OF SERVICE

1525 SOUTH SIXTH STREET = SPRINGFIELD, ILLINOIS 62703-2886 = 217/788-2450 = TWX 910-242-0519

SPRINGFIELD, ILLINOIS = PEORIA, ILLINOIS = ROCKFORD, ILLINOIS

M-5

ELEVATION 452.3

PIPE & SCREEN

8'	pipe screen	455.3 - 447.3
13'	screen	447.3 - 434.3

BACKFILL MATERIALS

concrete grout collar	452.3 - 450.3
bentonite seal	450.3 - 448.3
l/8" gravel pack	448.3 - 433.1

M-6

ELEVATION 438.9

PIPE & SCREEN

10'	pipe	443.9	-	433.9
6.4'	screen	433.9	-	427.5

BACKFILL MATERIALS

concrete grout collar	438.9 - 436.9
bentonite seal	436.9 - 434.9
1/8" gravel pack	434.9 - 427.5

NOW IN OUR THIRTH THAT AR OF SERVICE

1525 SOUTH SIXTH STREET SPRINGFIELD, ILLINOIS 62703-2886 217/788-2450 TWX 910-242-0519

M-7

ELEVATION 437.9

PIPE & SCREEN

	pipe	442.9	-	422.9
10'	screen	422.9	-	412.9

BACKFILL MATERIALS

concrete grout collar	437.9 - 435.9
bentonite & auger cutting	435.9 - 425.9
bentonite seal	425.9 - 423.9
1/8" gravel pack	423.9 - 412.9

M-8

ELEVATION 439.4

PIPE & SCREEN

21.4'	pipe	444.3 -	422.9
5.0'	screen	422.9 -	417.9

BACKFILL MATERIALS

concrete grout collar	439.4 - 437.4
bentonite & auger cutting	437.4 - 425.9
bentonite seal	425.9 - 423.9
1/8" gravel pack	423.9 - 417.9

NOW IN OUR THIRTH THAT AR OF STRATET

1525 SOUTH SIXTH STREET = SPRINGFIELD, ILLINOIS 62703-2886 = 217/788-2450 = TWX 910-242-0519

M-9

ELEVATION 452.0

PIPE & SCREEN

11.5'	pipe	455.0 - 443.5
10'	pipe screen	443.5 - 433.5

BACKFILL MATERIALS

concrete grout collar	452 - 450
bentonite, cement & sand	450 - 446
bentonite seal	446 - 444
1/8" gravel pack	444 - 433.2

NOW IN OUR THIRTH THAT AR OF STRATET

1525 SOUTH SIXTH STREET = SPRINGFIELD, ILLINOIS 62703-2886 = 217/788-2450 = TWX 910-242-0519

SPRINGFIELD, ILLINOIS = PEORIA, ILLINOIS = ROCKFORD, ILLINOIS

Technology

MONITORING WELL CONSTRUCTION

Facility/Project Name	Local Grid Location of	Well	⊠ E.	Well Name	
Ameren Hutsonville Power Station Drilling	<u>ft.</u>	N. <u>1176886.34</u> fi.		<u>TW-115s</u>	
Facility License, Permit or Monitoring No.	Local Grid Origin 🛛 🛛	(estimated:) or V	Vell Location	Unique Well No. Well Number	
	Lat	" Long"	or		
Facility ID	St. Plane	_ ft. N	ft. E.	Date Well Installed	
	Section Location			05/01/2004	
Type of Well	1/4 - 6 1/4	Affra T	D	Well Installed By: (Person's Name and Firm)	
Well Code 12/pz	1/4 of 1/4 Location of Well Relati	OI Sec, 1	Gov. Lot Number	Steve	
Distance from Waste/	u D Upgradient	s 🛛 Sidegradient			
Source ft.	d 🛛 Downgradient	-		Boart Longyear	
A. Protective pipe, top elevation	ft. MSL		1. Cap and lock?	🛛 Yes 🗆 N	٩v
	10.89 ft. MSL		 Protective cover p a. Inside diameter 	10	in
0	138.4 ft. MSL 🔨		b. Length:	6.0	_ ft.
D. Surface seal, bottom <u>437.4</u> ft. MSL			c. Material:	Steel 🕱 0	
				Other 482	
12. USCS classification of soil near screen:			d. Additional pro	ection? 🗆 Yes 🛛 N	NO
	W 🖾 SP 🖾		II yes, describe	::	
SM SC ML MH C Bedrock			3. Surface seal:	Bentonite 🛛 3	
	5 11			Concrete D 0	
13. Sieve analysis attached?	es MINO			Other	<u>44.1</u>
	ry □ 5 0		 Material between 	well casing and protective pipe:	
Hollow Stem Aug			5.	$\frac{1}{2}$ Bentonite \Box 3 2 Other \boxtimes	50 arem
Oth	er 口题道 .		4	*	
				a. Granular/Chipped Bentonite 🛛 3	
15. Drilling fluid used: Water 0 2 A				ad weight Bentonite-sand slurry 🔲 3	
Drilling Mud 0 3 No	ne ⊠99		cLbs/gal m	ad weight Bentonite slurry 🖸 3	31
16. Drilling additives used?			d% Bentoni	te Bentonite-cement grout 🛛 5	50
			eFt ³	volume added for any of the above	
Describe			f. How installed:	Tremie 🗆 0	
17. Source of water (attach analysis, if requi	ed):			Tremie pumped 🔲 0	
17. Source of water (attach analysis, if requi	eu).			Gravity 🛛 0)8
	· · ·		6. Bentonite seal:		
<u> </u>				$3/8$ in. \Box $1/2$ in. Bentonite chips \Box 3	
E. Bentonite seal, top ft. MSL	or ft			Other 🛛	197 <u>1</u>
	\backslash			Manufacturer, product name & mesh size	
F. Fine sand, top ft. MSL	or <u>28.0</u> ft.		a		<u>89</u>]
4094 o MGI	or <u>29.0</u> ft.			ft ³ : Manufacturer, product name & mesh size	
G. Filter pack, top fl. MSL	or <u>29.0</u> II.		a.	-	
H. Screen joint, top408.4 ft. MSL	or <u>30.0</u> ft.		b. Volume added	ft ³	
			9. Well casing:		23
I. Well bottom 403.4 ft. MSL	or <u>35.0</u> ft.			· · · · · · · · · · · · · · · · · · ·	24
				Other	
J. Filter pack, bottom ft. MSL	or <u>36.0</u> ft.		0. Screen material:		61
			a. Screen Type:	Factory cut 🛛 1	
K. Borehole, bottom <u>402.4</u> ft. MSL	or <u>36.0</u> ft.			Continuous slot 🗖 🕻	
			<u> </u>	Other 🗆	114
L. Borehole, diameter <u>8.3</u> in.		VIIIIIN	b. Manufacturer	Boart Longyear	
		\backslash	c. Slot size:	0.010	<u>'</u> in.
M. O.D. well casing 2.33 in.			d. Slotted length		<u>)</u> ft.
		\sim_1	1. Backfill material	(below filter pack): None 🔀 1	
N. I.D. well casing <u>2.00</u> in.				Other 🙀 🛉	<u>"6 8</u>
				· · · · · · · · · · · · · · · · · · ·	
I hereby certify that the information on this f	orm is true and correct to	the best of my knowled	ge.		-

Signature	Firm Natural Resource Technology, Inc.	Tel: (262) 523-9000
Paula Richardson	23713 W. Paul Road, Unit D, Pewaukee, WI 53072	Fax: (262) 523-9001
7	Template: NRT WE	LL CONSTRUCTION - Project: 1375 LOGS.GPJ

Technology

R

MONITORING WELL CONSTRUCTION

Facility/Project Name	Local Grid Locat			ME	Well Name		
Ameren Hutsonville Power Station Drilling	898052.56	ft. □ S1	<u>176882.3</u> ft.	$\square W$.	<u> </u>	<u>-115d</u>	
Facility License, Permit or Monitoring No.	Local Grid Origir	n 🛛 (estimated	d: 🗌) or W	/ell Location	Unique Well No.	Well Number	
	Lat	<u> </u>	ong	or			
Facility ID	St. Plane	ft. N		_ ft. E.	Date Well Installed		
	Section Location					1/2004	
Type of Well	1/4 of	1/4 of Sec	т	D	Well Installed By: (Pers	on's Name and Fi	rm)
Well Code 12/pz	Location of Well			Gov. Lot Number	<u>Si</u>	leve	
Distance from Waste/	u 🛛 Upgradie		Sidegradient				
Source ft.		dient n 🛛 🕅			Boart I	Longyear	
A. Protective pipe, top elevation	ft. MSL —		_1 /	. Cap and lock?	·	🛛 Yes [] No
B. Well casing, top elevation44	<u>40.80</u> ft. MSL —	Į		 Protective cover j a. Inside diameter 	•		<u>4.0</u> in.
C. Land surface elevation	1 <u>38.4</u> ft. MSL 🥆			b. Length:c. Material;		Steel	<u>6.0</u> ft.
D. Surface seal, bottom ft. MSL	or <u>1.0</u> ft.					Other	8
12. USCS classification of soil near screen:			N N N N N N N N N N N N N N N N N N N	d. Additional pro	e:	🛛 Yes 🛛	X NO
				li yes, describe			
SM SC ML MH C Bedrock		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		. Surface seal:		Bentonite	
13. Sieve analysis attached?	s STNo					Concrete	
				Motorial botween	well casing and protec		
14. Drilling method used: Rota Hollow Stém Aug	-				• ·		
rock core Oth			8	Sa	nd	Other	
15. Drilling fluid used: Water⊠ 0 2 A	ir □01				a. Granular/Chip ad weight Bentoni		
Drilling Mud 03 Nor					ud weight Bentom		
					te Bentonite		
16. Drilling additives used?	es 🖾 No				volume added for any of t	-	
				f. How installed:		Tremie	01
Describe			8		Tr	emie pumped	⊠ 02
17. Source of water (attach analysis, if require	red):		8			Gravity	
Ameren well			1 🗱 · d	5. Bentonite seal:	a. Bent	onite granules	33
			₩ /		3/8 in. □1/2 in. B		
E. Bentonite seal, top361.4 ft. MSL	or ft.	. 👹		c		Other	
F. Fine sand, top358.4 ft. MSL	or <u>80.0</u> ft.			 Fine sand material: a 	Manufacturer, product na #7 Badger	me & mesh size	
F. Fine sand, top358.4 ft. MSL	01 <u> </u>		፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟			ft ³	
G. Filter pack, top ft. MSL	or <u>81.0</u> ft.		8/ 8		: Manufacturer, product r		2
				a	#40 Badger		
H. Screen joint, top356.4 ft. MSL	or <u>82.0</u> ft.			b. Volume added		ft³	
				9. Well casing:	Flush threaded PV	C schedule 40	23
I. Well bottom351.4 ft. MSL	or <u>87.0</u> ft.				Flush threaded PV		And a second sec
						Other	
J. Filter pack, bottom 350.4 ft. MSL	or <u>88.0</u> ft.	. — <u>\</u> Ę	10). Screen material:	PVC		
				a. Screen Type:		Factory cut	🛛 11
K. Borehole, bottom 333.4 ft. MSL	or <u>105.0</u> ft.	· 🔨 🛛 📶			C	ontinuous slot	and with the state
			X		De	Óther	
L. Borehole, diameter <u>8.3</u> in.				b. Manufacturer	Boart Longye		010 ·
0.00			\backslash	c. Slot size:).010 in. 5.0 ft.
M. O.D. well casing 2.33 in.			\sim	d. Slotted length		Nee	
			ł	Pent	(below filter pack):		□ 14 ⊠
N. I.D. well casing 2.00 in.						Outer	

 I hereby certify that the information on this form is true and correct to the best of my knowledge.

 Signature

 Vare
 Paula Richardson

 Firm
 Natural Resource Technology, Inc.

 23713 W. Paul Road, Unit D, Pewaukee, WI 53072
 Fax: (262) 523-9000

 Fax:
 (262) 523-9001

 Fax:
 (262) 523-9001

Natura Resource

Technology

MONITORING WELL CONSTRUCTION

Facility/Project Name	Local Grid Location of	of Well		Well Name	· · · · · · · · · · · · · · · ·	
Ameren Hutsonville Power Station Drilling		N. <u>1175442.33</u> ft.	⊠E. □W.	TW	-116	
Facility License, Permit or Monitoring No.	Local Grid Origin 🛛	(estimated: 🗌) or 🕚	Well Location	Unique Well No.	Well Number	
	Lai	Long	'" or			
Facility ID	St. Plane	ft. N,	ft. E.	Date Well Installed		
	Section Location				8/2004	
Type of Well	1/4 of 1	/4 of Sec, T	R	Well Installed By: (Pers	on's Name and Firr	n) -
Well Code 12/pz		ative to Waste/Source	Gov. Lot Number	Si	leve	
Distance from Waste/ Source	u 🛛 Upgradient	s 🛛 Sidegradient		Durt		
<u>1t.</u>		t n 🗌 Not Known		Board	Longyear	
A. Protective pipe, top elevation	ft. MSL		 Cap and lock? Protective cover j 		🛛 Yes 🗆] No
B. Well casing, top elevation4	39.77 ft. MSL		a. Inside diameter			<u>4.0</u> in.
	137.5 fl. MSL		b. Length:c. Material:		Steel 🗴	<u>6.0</u> ft. ∎04
D. Surface seal, bottom ft. MSL	or <u>1.0</u> ft.				Other 🕉	ł 🖳
12. USCS classification of soil near screen:	<u></u>	YE YE .	d. Additional pro		🗆 Yes 🛛] No
	W 🛛 SP 🗖		If yes, describe	2:		
SM SC ML MH C Bedrock			3. Surface seal:		Bentonite	
13. Sieve analysis attached?					Concrete	
] <u>1990 -</u>
14. Drilling method used: Rota			4. Material between	well casing and protec	Bontonito	1 20
Hollow Stem Aug rock core Oth	-		San	ıd	Other IX	a 🕮
15. Drilling fluid used: Water⊠02 A	.ir 🗆 0 1			a. Granular/Chip ud weight Bentoni		
Drilling Mud 0 3 Nor			cLbs/gal mi		ntonite slurry	
			d% Bentoni		-cement grout	
16. Drilling additives used?	es 🛛 No			volume added for any of t	-	
			f. How installed:		Tremie 🗆] 01
Describe 17. Source of water (attach analysis, if require	uod)			Tr	emie pumped	
17. Source of water (attach analysis, if requir	eu).				Gravity 🛛	08
Ameren well			6. Bentonite seal:		onite granules	
				$3/8 \text{ in.} \square 1/2 \text{ in.} B$		
E. Bentonite seal, top ft. MSL	or ft. <					6.884
A14.5 C MC	23.0 .	× 🗱 🗱 / /		Manufacturer, product na #7 Badger	ane & mesh size	120
F. Fine sand, top414.5 ft. MSL	or <u>23.0</u> ft.		a		ft ³	E SSE.
C Ellen and the 4135 & MSI	or <u>24.0</u> ft.		 b. Volume added 8 Eilter nack material 	: Manufacturer, product n		
G. Filter pack, top ft. MSL			o. I nici pack material	#40 Badger	anie oc mesn size	
H. Screen joint, top412.5 ft. MSL	or <u>25.0</u> ft.		b. Volume added	L		<u></u>
	· · · · · · · · · · · · · · · · · · ·		 9. Well casing: 	Flush threaded PV		123
I. Well bottom <u>407.5</u> ft. MSL	or <u>30.0</u> ft.			Flush threaded PV	C schedule 80 🗆	24
406.5 6 1/61	310 0			PVC	Other 🖸	
J. Filter pack, bottom ft. MSL	or $\frac{31.0}{1.0}$ ft.		0. Screen material:a. Screen Type:		Factory cut	
K. Borehole, bottom358.5 ft. MSL	or <u>79.0</u> ft.		u. Bereen Type.	C	ontinuous slot	
					Other [
L. Borehole, diameter <u>8.3</u> in.			b. Manufacturer	Boart Longye	ar	
		\sim	c. Slot size:		0.0	010 in.
M. O.D. well casing <u>2.33</u> in.		\backslash	d. Slotted length			<u>5.0</u> ft.
		×1	1. Backfill material		None	
N. I.D. well casing 2.00 in.			Ventonia	2, 51 uff	Other 🛛	
I hereby certify that the information on this for	rm is true and correct	to the best of my knowled	ae			
Thereby centry that the mormation on this it	minis true and correct	to me deat of my knowled	6~.			

Signature Paula Richardson Paula Richardson	Firm Natural Resource Technology, Inc. 23713 W. Paul Road, Unit D, Pewaukee, WI 53072	Tel: (262) 523-9000 Fax: (262) 523-9001
		LI COMPTRICTION D. L. 1226 LOCE CRI

Natura Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3 Resource Technology **MONITORING WELL CONSTRUCTION**

Facility/Project Name	Local Grid Location	of Well		N C	Well Name			
Ameren Hutsonville Power Station Drilling	<u>895267.78ft.</u>	⊠ N. <u>1179053</u> □ S	<u>.33</u> ft.		TW	-117		
Facility License, Permit or Monitoring No.	Local Grid Origin				Unique Well No.	Well Number		
	Lat	Long		or	Date Well Installed			
Facility ID	St. Plane	ft. N,		ft. E.				
Type of Well	Section Location				04/29 Well Installed By: (Perso	/2004	Firm)	
••	1/4 of	1/4 of Sec,	Г	R	-		r 1111)	
Well Code 12/pz Distance from Waste/	Location of Well Re	lative to Waste/Sou	rce (iov. Lot Number	Ste	eve		-
Source ft.	d D Downgradient	s 🛛 Sidegr nt n 🗆 Not Kı			Boart L	ongyear		
	ft. MSL		<u> </u>	Cap and lock?		🛛 Yes	S 🗆 No	,
B. Well casing, top elevation4	38.09 ft. MSL	H P&	2.	Protective cover p a. Inside diameter			<u>4.0</u> i	
C. Land surface elevation	435.0_ ft. MSL 🔨			b. Length:		-	6.0	ft.
D. Surface seal, bottom <u>434.0</u> ft. MSI	or <u>1.0</u> ft.		1. 21. 21	c. Material:				
12. USCS classification of soil near screen:	N N		212-212-21 4 <u>6</u> 77 <u>6</u> 77	d. Additional prot	ection?		S 🛛 No	
GP GM GC GW S	W 🗆 SP 🛛	\times 1 \mathbb{R}	\backslash	•	:			
SM SC ML MH C Bedrock			\\ _{3.}	Surface seal:		Bentonite Concrete		
13. Sieve analysis attached?	es 🖾 No 🛛 .		\backslash		·	Other		
14. Drilling method used: Rota	ry 🔲 5 0		×4.	Material between	well casing and protect			
Hollow Stem Au	ger 🖾 4 1	. 🗱 🗱		Sar	id	Bentonite)
Oth	er 🗆 📃			Sar		Other		1
				Annular space seal:				
15. Drilling fluid used: Water □ 0 2 A Drilling Mud □ 0 3 No				-	d weight Bentonit	•		
				Lbs/gal mu % Bentonii	d weight Ber Bentonite	-		
16. Drilling additives used?	es 🖾 No			+	volume added for any of th	cement grout		,
				How installed:	or any or any			
Describe					Tre	mie pumped	0 2	!
17. Source of water (attach analysis, if requi	red):					Gravity	⊠ 08	;
			6.	Bentonite seal:		nite granules		
					3/8 in. □1/2 in. Be			
E. Bentonite seal, top ft. MSL	. or ft. <		/ -					<u>i</u>
F. Fine sand, top422.0 ft. MSL	or 13.0 ft.s		/ /'.	a	Manufacturer, product nar #7 Badger	ne & mesn siz	e Se	
···-	···· (b. Volume added		3		-
G. Filter pack, top ft. MSL	. or <u>14.0</u> ft. 🔨		,8.	Filter pack material:	Manufacturer, product na	ume & mesh si	ze ·	
100.0	1.5.0			a	#40 Badger			
H. Screen joint, top 420.0 ft. MSL	or <u>15.0</u> ft. —				fi			
415.0 6 140	20.0		9.	Well casing:	Flush threaded PVC			
I. Well bottom ft. MSL	or <u>20.0</u> ft. \sim				Flush threaded PVC			FK .
J. Filter pack, bottom414.0 ft. MSI	or <u>21.0</u> ft. ~		10	Screen material:	PVC	Other		
			- 10.	a. Screen Type:		Factory cut		_
K. Borehole, bottom345.0 ft. MSL	or <u>90.0</u> ft. <				Со	ntinuous slot		
				·				100
L. Borehole, diameter <u>8.3</u> in.				b. Manufacturer	Boart Longyea		0.010	
			\backslash	c. Slot size:		-	<u>0.010</u> j	in.
M. O.D. well casing 2.33 in.			\mathbf{X}_{i}	d. Slotted length: Book fill material			5.0	
N. I.D. well casing <u>2.00</u> in.			11.	SI w	(below filter pack): - [.		□ 14 ⊠ ₩	_
				· · · · · · · · · · · · · · · · · · ·				
I hereby certify that the information on this f	orm is true and correc	t to the best of my k	nowledge					

Signature	۳	1. m	Firm	Natural Resource Technology, Inc.	Tel: (262) 523-9000
Paul	In Richards-	Paula Richardson		23713 W. Paul Road, Unit D, Pewaukee, WI 53072	Fax: (262) 523-9000
/				T-meleter NDT WELL CONSTRU	CTION DUCTION 1276 LOCE CD

Resource Technology

MONITORING WELL CONSTRUCTION

N R T							•
Facility/Project Name	Local Grid Location	of Well		N	Well Name		
Ameren Hutsonville Power Station Drilling		$\frac{11779}{18}$	978.73_ft.	N E.	TW	/-118	
Facility License, Permit or Monitoring No.	Local Grid Origin D	🔇 (estimated: []) or W	Vell Location	Unique Well No.	Well Number	
	Lat	Long	••	' or			
Facility ID	1				Date Well Installed		
	St. Plane Section Location	n. n,		_ n. e.	05/0	04/2004	
Type of Well	Section Location				Well Installed By: (Pers	son's Name and F	irm)
	1/4 of	1/4 of Sec	<u>_, T</u>	. R		teve	
Well Code 12/pz Distance from Waste/	Location of Well Rel			Gov. Lot Number		leve	
Source	u 🛛 Upgradient	s 🗆 Side	-		Boart	Longyear	
<u>ft.</u>	d 🗆 Downgradier			. Cap and lock?		X Yes	
A. Protective pipe, top elevation	ft. MSL			2. Protective cover	nino:		
B. Well casing, top elevation4	39.21 ft. MSL	#1 #	$^{\prime}$	a. Inside diamete			<u>4.0</u> in.
0.1					1.		<u>6.0</u> ft.
C. Land surface elevation	<u>437.0</u> ft. MSL		20	 b. Length: c. Material: 		Steel	X 04
D. Surface seal, bottom436.0 ft. MSI	or 1.0 ft.		15 25 31	c. Material.		Other 4	
			21-21-21	d Additional ma	tection?		,
12. USCS classification of soil near screen:		\sim \sim			e:		
	WO SP 🛛 LO CHO		$\langle \rangle \rangle$	II yes, describ			-
SM SC ML MH C Bedrock		88	$\langle \rangle_3$	3. Surface seal:		Bentonite	
	SIN .					Concrete	
·	es 🖾 No			,			<u> 10748</u>
14. Drilling method used: Rota	· 1		4	 Material betweer 	well casing and prote		
Hollow Stem Aug						Bentonite	
Oth	er 🗆 🕮 🛛			·····		Other	X <u>*</u> _
			5	5. Annular space seal:	a. Granular/Chij	oped Bentonite	🛛 33
15. Drilling fluid used: Water 0 2 A				bLbs/gal m	ud weight Benton	ite-sand slurry	35
Drilling Mud 0 3 No	ne 🖾 9 9			cLbs/gal m	ud weight B	entonite slurry	31
				d% Benton	ite Bentonite	e-cement grout	□ 50
16. Drilling additives used?	es 🛛 No			eFt ³	volume added for any of	the above	
				f. How installed:		Tremie	01
Describe					Т	remie pumped	02
17. Source of water (attach analysis, if requi	red):					Gravity	⊠ 08
			e	6. Bentonite seal:	a. Ben	tonite granules	
			ĺ		3/8 in. □ 1/2 in. B	-	
E. Bentonite seal, top ft. MSL	or ft						
E. Bentoline seal, top It. MSL					Manufacturer, product n		
F. Fine sand, top419.0 ft. MSL	an 180 A.				#7 Badger		
F. Fine sand, top ft. MSL	. or II. <		/ /	a b. Volume added	¥	ft ³	
418.0 5 40	or <u>19.0</u> ft.				: Manufacturer, product		
G. Filter pack, top ft. MSL	or II.		/ / [°]	•	#40 Badger	name & mesh size	
417.0	20.0			a		<u></u>	
H. Screen joint, top	or <u>20.0</u> ft. $-$					ft ³	a
412.0	25.0		Ý S	9. Well casing:	Flush threaded PV		
I. Well bottom ft. MSL	or <u>25.0</u> ft.				Flush threaded PV		
						Other	
J. Filter pack, bottom fl. MSI	or <u>26.0</u> ft. ~			0. Screen material:	PVC		
				a. Screen Type:		Factory cut	⊠ 11
K. Borehole, bottom fl. MSI	or <u>26.0</u> ft.				C	Continuous slot	10 VHUT1
		\\ \///#				Other	
L. Borehole, diameter <u>8.3</u> in.			5	b. Manufacturer	Boart Longy		
			\mathbf{i}	c. Slot size:			<u>0.010</u> in.
M. O.D. well casing 2.33 in.			\backslash	d. Slotted length	1:		<u>5.0</u> ft.
			\sim_{11}	1. Backfill material	(below filter pack):		X 14
N. I.D. well casing <u>2.00</u> in.						Other	&
····							
I hereby certify that the information on this f	orm is true and correct	t to the best of m	y knowleds	ge.			
			-	-			

Signature	rdson Firm Natural Resource Technology, Inc.	Tel: (262) 523-9000
Tan Pictor Paula Richa	23713 W. Paul Road, Unit D, Pewaukee, WI 53072	Fax: (262) 523-9001

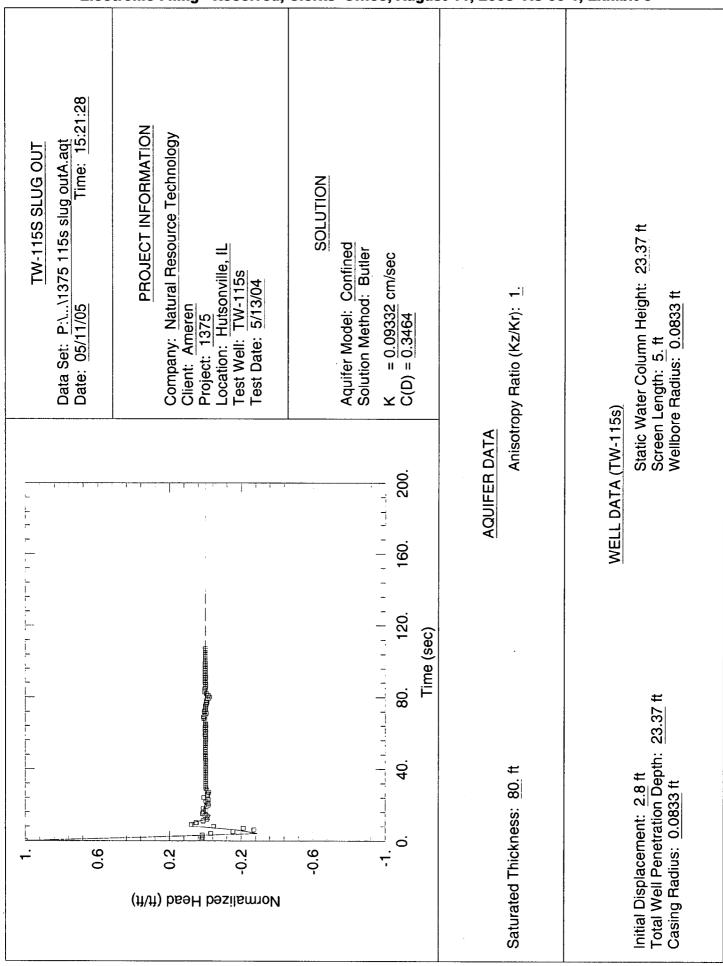
Natura Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3 MONITORING WELL CONSTRUCTION

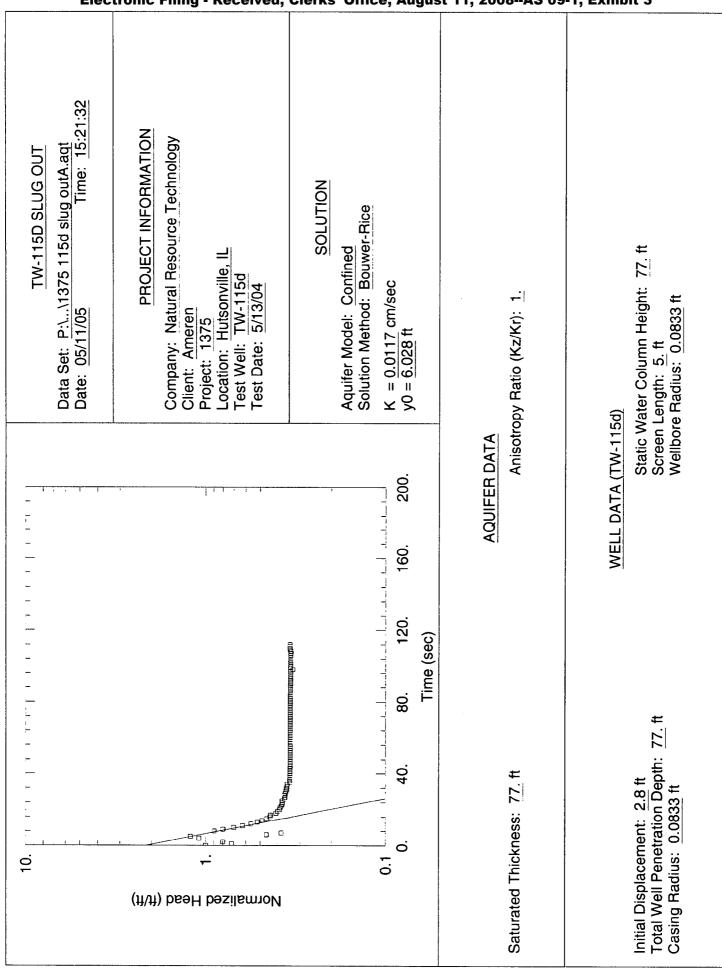
NRI								
Facility/Project Name	Local Grid Loca	tion of Well			Well Name			
Ameren Hutsonville Power Station Drilling	896030.54	_ft. 🖸 S1	81339.05 ft.	MUE. INV.		TW-119		
Facility License, Permit or Monitoring No.	Local Grid Orig	in 🛛 (estimate	d: 🗋) or '	Well Location		No. Well N	umber	
	Lat	Lo	ong	• ••	or			
Facility ID	1	ft. N,			Date Well Inst	alled		
	Section Location	II. N, _		II. E.		05/03/2004		
Type of Well	1				Well Installed	By: (Person's Nam	e and Firn	n)
Well Code 12/pz	1/4 of	1/4 of Sec	, T			Steve		
Distance from Waste/		Il Relative to Was		Gov. Lot Numbe	er	Sieve		
Source ft.		ent s□ adient n⊠	-			Boart Longyea	ır	
				1. Cap and lock	<u> </u>		Yes 🗆	No
A. Protective pipe, top elevation	ft. MSL -			2. Protective co		6		; NO
B. Well casing, top elevation4	<u>38.12</u> ft. MSL -			a. Inside diam	••		4	<u>4.0</u> in.
					leter.			<u>6.0</u> ft.
C. Land surface elevation	435.4 ft. MSL >			b. Length: c. Material:			Steel 🔀	
D. Surface seal, bottom434.4 ft. MSI	or <u>1.0</u> ft.	2.212.214	1. 21. 21	c. Material:			Other 🛣	
· · · · · · · · · · · · · · · · · · ·			1.1.2.1.2.1					
12. USCS classification of soil near screen:		-74-74			protection?		Yes 🛛	i NO
	WD SP 🛛			It yes, desc	cribe:			
SM SC ML MH C Bedrock	го сно	8		3. Surface seal:			tonite 🛛	
							ncrete 🛛	
13. Sieve analysis attached?	es 🖾 No			······				
14. Drilling method used: Rota	ry 🗆 50		× `	4. Material betw	veen well casing a	nd protective pip	e:	
Hollow Stem Aug	ger 🛛 4 1		8	· · · · · · · · · · · · · · · · · · ·	C 0	Ben	tonite 🗖	30
rock core Oth	er 🛛 🖳		8		Sand		Other 🛛	
			×	5. Annular space		ular/Chipped Ben		
15. Drilling fluid used: Water ⊠ 0 2 A	.ir □01		8		al mud weight			
Drilling Mud 0 3 No	ne □99		8		al mud weight			
5			8	d% Bei	-	Bentonite-cement		
16. Drilling additives used?	es 🖾 No		×				-	1 50
			8		_Ft ³ volume added f	-		1 0 1
Describe			8	f. How instal	led:		remie 🛛	
17. Source of water (attach analysis, if require		8				Tremie pu	-	
			XX				ravity 🛛	
Town of Hutsonville well			XX . ,	6. Bentonite sea		a. Bentonite gra		
					\Box 3/8 in. \Box 1/2			
E. Bentonite seal, top ft. MSL	or f	ù. 👹		c		·	Other 🛛	
					rial: Manufacturer,	product name & me	esh size	
F. Fine sand, top422.4 ft. MSL	or <u>13.0</u> f	ì. 🔪 👹 🛛	₩ / /	a	#7 Bac	lger		
				b. Volume ad	lded	ft ³		
G. Filter pack, top421.4 ft. MSL	or <u>14.0</u> f	$\iota \sim \sum \Theta$	8/ /		erial: Manufacturer	, product name & n	nesh size	
				a	#40 Ba	dger		
H. Screen joint, top ft. MSL	or <u>15.0</u> f			b. Volume ad	Ided .	ft ³		
	·· ·	"	-01∕	9. Well casing:		eaded PVC sched	bile 40 ⊠	23
1. Well bottom ft. MSL	or <u>20.0</u> f			9. Wen easing.		eaded PVC sched		
	01 <u></u> 1				r lush un		Other	1513CB 19
414.4 A MOL	21.0 (PVC		
J. Filter pack, bottom414.4 ft. MSL	or <u>21.0</u> f			10. Screen mater				
225.4	100.0			a. Screen Ty	pe:		ry cut 🛛	
K. Borehole, bottom ft. MSL	, or <u>100.0</u> f	ì. 🔨 🛛 🖉				Continuo		BATCH THEFT I
		\sim	X		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Other 🛛	
L. Borehole, diameter <u>8.3</u> in.				 b. Manufactu 	urer <u>Boar</u>	t Longyear	-	
			\backslash	c. Slot size:			0.0	<u>010</u> in.
M. O.D. well casing 2.33 in.				d. Slotted ler				<u>5.0</u> ft.
-			<u>`</u> 1	11. Backfill mate	rial (below filter		None 🗆	
N. I.D. well casing <u>2.00</u> in.				bent	on ite, sic	4+	Other 🛛	
I hereby certify that the information on this for	orm is true and co	prrect to the best of	f my knowled	lge.				
Signature	· · · · · · · · · · · · · · · · · · ·	imm	ource Technol			T	(262) 52	3.0000
Paula Richards Paula Ric	hardson			it D, Pewaukee, V	WI 53072		(262) 52 (262) 52	
1 Classin procession		23713 W. P.	uui iyoau, Uffi	. D, I EWAUKEE,		1°dX.	(202) 32	

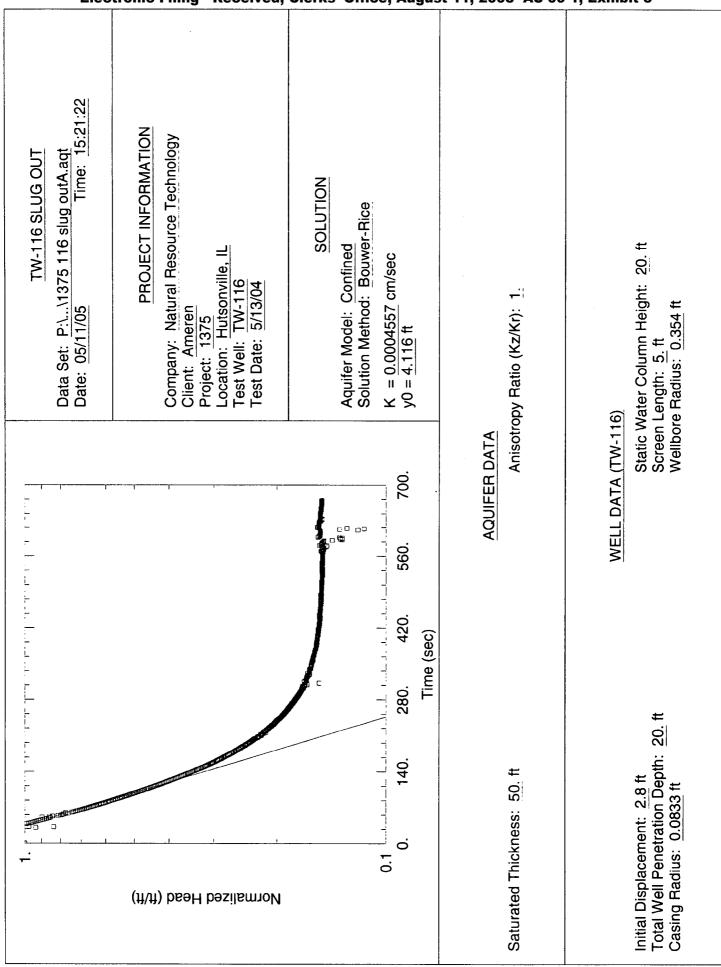
Natural Resource Technology NoNITORING WELL CONSTRUCTION

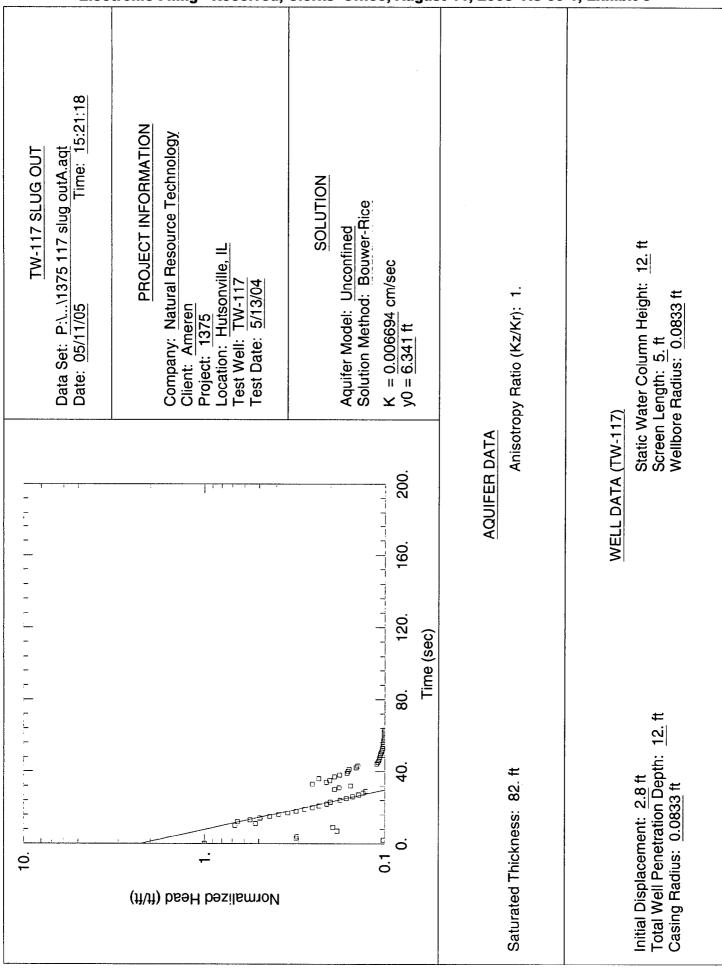
Facility/Project Name	Local Grid Locati	on of Well		M E	Well Name			
Ameren Hutsonville Power Station Drilling	<u>898614.91</u>	N180	0157.14ft.	ΩE. ΠW.	TW	/-120		
Facility License, Permit or Monitoring No.	Local Grid Origin	🛛 🛛 (estimated:	Or W	ell Location	Unique Well No.	Well Number		
	Lat.	" Lon	o	or				
Facility ID	1				Date Well Installed			
	St. Plane Section Location	II. N,		_ N. E.	05/0	4/2004		
Type of Well	Section Location				Well Installed By: (Perso		irm)	
	1/4 of	1/4 of Sec	, T					
Well Code 12/pz Distance from Waste/	Location of Well			Gov. Lot Number	<u>St</u>	teve		
Source	u 🗆 Upgradien		degradient	•	Boart J	Longyear		
<u> </u>		lient n 🖾 No			Dout(1		_	<u> </u>
A. Protective pipe, top elevation	ft. MSL —			Cap and lock?		🛛 Yes	LJ	NO
B. Well casing, top elevation44	49.00_ ft. MSL		\mathbb{R}^{2}	. Protective cover j				Λ.
6, 1				a. Inside diameter	••	. —		<u>0</u> in.
C. Land surface elevation	<u>446.8</u> ft. MSL 🥄			b. Length:				<u>0</u> ft.
D. Surface seal, bottom445.8 ft. MSL	or 1.0 ft	31.31	1. 21. 21	c. Material:		Steel		
· · · · · · · · · · · · · · · · · · ·	· or n. <		1211-211-21			Other		
12. USCS classification of soil near screen:			· · · · · · · · · · · · · · · · · · ·	d. Additional pro		🗆 Yes	\boxtimes	No
	W 🗆 SP 🛛		\land	If yes, describe			-	
	L СН			. Surface seal:		Bentonite	\boxtimes	30
Bedrock				. Suitace seat.		Concrete		
13. Sieve analysis attached?Image: Yes	es 🖾 No					Other		
14. Drilling method used: Rota	ту □ 5 0		8 `4	. Material between	well casing and protec			
Hollow Stem Aug			8	<	0	Bentonite		30
Oth			8		ind	Other	⊠	
			8	A	a. Granular/Chip			
15. Drilling fluid used: Water 🗆 0 2 A	lir 🗆 0 1				ud weight Bentoni			
Drilling Mud 0 3 Nor	1							
					ud weight Be			
16. Drilling additives used?	es 🖾 No		~	d% Bentoni		-cement grout		50
			Q4		volume added for any of the		-	<u>.</u> .
Describe				f. How installed:	~	Tremie		
17. Source of water (attach analysis, if requir			8		°1 r	emie pumped		
			8			Gravity		
			§ ,6	. Bentonite seal:		onite granules		
			8 /		3/8 in. □ 1/2 in. Be			
E. Bentonite seal, top421.8 ft. MSL	or <u>25.0</u> ft.			c		Other		
			δ / ,7	. Fine sand material:	Manufacturer, product na	ime & mesh size	1	
F. Fine sand, top418.8 ft. MSL	or <u>28.0</u> ft.		8//	a	#7 Badger			1
			\${/ /	b. Volume added	f	ſt³		
G. Filter pack, top417.8 ft. MSL	or <u>29.0</u> ft.		8	. Filter pack material	: Manufacturer, product n	iame & mesh siz	e	
				a	#40 Badger			
H. Screen joint, top416.8 ft. MSL	or <u>30.0</u> ft.			b. Volume added		6 ³	_	
			<u>م</u>	. Well casing:	Flush threaded PV			23
I. Well bottom 411.8 ft. MSL	or <u>35.0</u> ft.			, wen casing.	Flush threaded PV			
	or re.				Thush an cuded T	Other		ALC: NOT
L Eilter neek bettern 4108 & MSI	or <u>36.0</u> ft.		1		PVC			
J. Filter pack, bottom410.8 ft. MSL	or <u> </u>		S - 10	. Screen material:			_	
410.8 6 400	36.0 0			a. Screen Type:	0	Factory cut		
K. Borehole, bottom ft. MSL	or <u>36.0</u> ft.				Ca	ontinuous slot		e las antiers
0.2					Deart Learning	Other	Ш	and the
L. Borehole, diameter <u>8.3</u> in.				b. Manufacturer	Boart Longyea		0.01	. .
			\backslash	c. Slot size:			<u>0.01</u>	0 in.
M. O.D. well casing 2.33 in.				d. Slotted length			A	<u>.0</u> ft.
			` 11	. Backfill material	(below filter pack):	None		
N. I.D. well casing <u>2.00</u> in.						Other	\boxtimes	
I hereby certify that the information on this for	orm is true and cor	rect to the best of	my knowledg	je.	· · · ·			
Signature	Fin	m Natural Resou	arce Technolo	gy. Inc.		Tel: (262)	523	3-9000
Paula Richards Paula Ric	hardson			D, Pewaukee, WI	53072	Fax: (262)		

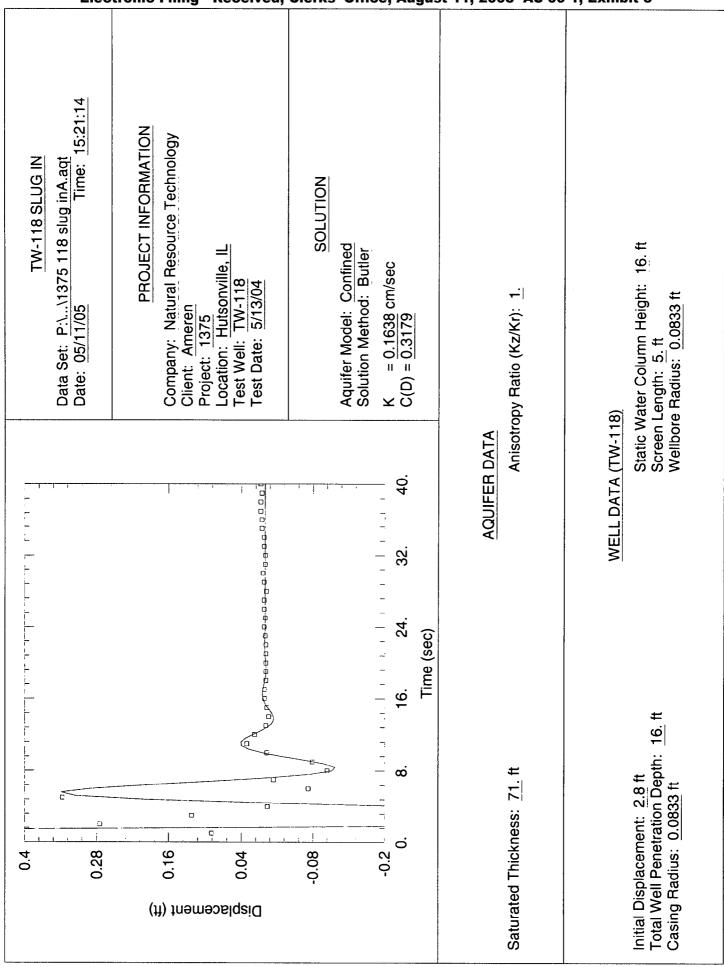
	Vatershed/Wastewater		ement	MONITORING WEI	
	emediation/Redevelopm	NY 11		817-11 37	
Facility/Project Name	Local Grid Location of			Well Name	
	Level Goid Onizin C.	S estimated: or W		MW-112 Unique Well No	
Facility License, Pennit or Monitoring No.) <u>, U</u> .	Unique weitho	
	Lat	Long.	or	Dare Well Installed	1
Facility ID	St. Plane		fl_ES/C/N	10	1031200
Type of Well	Section Location of Was			Weil Installed By: N	d d v v
Well Code 11 / MW	1/4 of 1/4 c			R. Radke	· · ·
Distance from Waste/ Enf. Stds.	Location of Well Relation	s Sidegradient	Gov. Lot Number		
Source 80 ft Apply	d 🗆 Downgradient			BOART Lor	AVERA
	fLMSL		Cap and lock?	<u> </u>	X Yes 🗆
		21	Protective cover p	ipe:	
B. Well casing, top elevation _ 4 9 :	5 5 fl MSL		. Inside diameter.	· · ·	ั _ ป.
C. Land surface elevation _ 4 4 9	92fLMSL		b. Length:		
and the second			c. Material:		Steel 📰
D. Surface seal, bottom fr. MS	Lor_Q. Sft				Other 🗖
12. USCS classification of soil near screen		A A A A A A A A A A A A A A A A A A A	d. Additional prot	ection?	📑 Yes 🗖
GPIGME GCE GWE S		3. 4 4. 1 5. 4 6. 1 6. 1	If yes, describe	. 3" Bumper Pos	τ
			Cf		Bentonite
Bedrock			Surface scal:		Concrete
13. Sieve analysis performed?	es 🔳 No				Other 🛛
14. Drilling method used: Rot	ary □ 50	3. 3 4. 1 5. 4 4. 1 5. 4 6. 1 6. 1	Material between	well casing and protect	tive pipe:
Hollow Smm Au					Bentonite 🗆
	her 🗆 🎆		SAND		Other
		5.	Amular space sea	1: a Granular/Chip	ped Bemonite 🔳
	Air 🗆 01 👘			nd weight Bentoni	
Drilling Mud 🔲 03 N	one 🔳 99			nd weight Ber	
				te Bentonite	
16. Drilling additives used?	es 🔳 No		Fi ³	volume added for any	of the above
• ,			How installed:	•	Tremie 🗖
Describe	I			Tre	mie pumped 🗖
17. Source of water (attach analysis, if requ	red):				Gravity 🔳
		6.1	Bentonite seal:	a. Benir	nite gramies 🔳
		1 👹 🖼 🛛 1	o. □1/4 in. □3	5/8 in 🗆 1/2 in Be	entonite chips 🛛
E Benumite seal, topfr. MS	_ or 4 . Oft.		<u>. </u>		Other 🛛
			····	1. 14	
F. Fine sand, top fL MS	<u>4.0</u> £//	、嬲 鬷 / ()		i: Manufacturer, prod	
			<u>#7 BA</u>	DEER MATERI	
G. Filter pack_topfr. MS	_m4.≦≞√ `		. Volume added		ft ³
	10 AV	7. 1 7. 1 8. 1	Filler pack materi	al: Manufacturer, proc	iuci name & mes
A. Sereen joint, 10pft. MS	. ar5.5ft			ERICAN MINTER	
	-		. Volume added		fi ³
Well bonom	15.5ft	9.1	Well casing:	Flush threaded PVC	schednle 40 🖪
· · · · · · · · · · · · ·				Flush threaded PVC	schedule 80 🔲
Filer pack, bottomft MS	or_16.0ft			·	Other 🛛
·		10.	Screen material:	PVC	
K. Borchole, bottom	or_16. Oft		. Screen type:		Factory cut
			· · · · ·	Ca	nuinuous slot 🔲
Borchole, diameter _ 8.3 in.		Vertice 1			Other 🛙
	•	<u>\</u> н	Mamufacturer	Johnson	·
M. O.D. well casing _ 2 3 5 m			Slot size:		
	e e e		L Sloued length:		15
N. LD. well casing _ <u>2</u> 1 0 in.		• -		(below filter pack):	None E
N. I.D. well casing $2.1.0$ in.		11.		Conce mer have.	Other
I hereby certify that the information on this		to the best of my knowl	ledipe		
	Firm		·		
Signamre		Der Der	(Ten 1) =	TAC	
Mar by liken	NATU	RAL RESOURCE	18ChNology		
			۱ ۱		

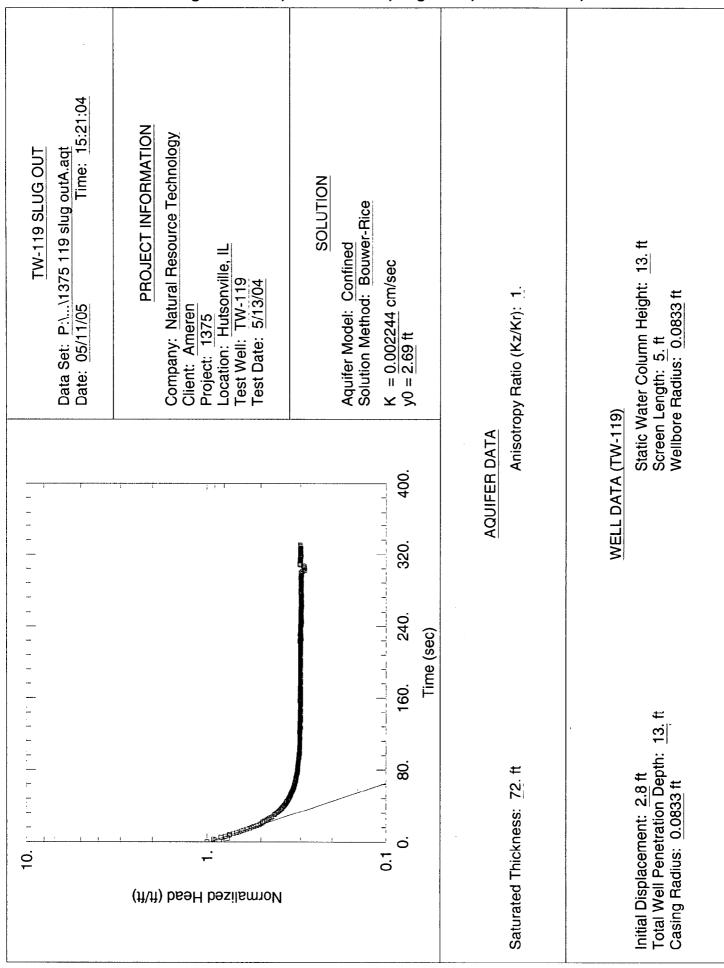

Ronte to:	Watershed/Wastewater	Waste Management	MONITORING WELL CONSTRUC
	Remediation/Redevelopment	Other	
Facility/Project Name	Local Grid Location of Well]Nf. []E	Weil Name
lutsonuille Power STATION			
Facility License, Permit or Monitoring No.		• •	Unique Well No. DNR Well ID
	Lat	Long	. or
Facility ID	St. Plane fl. N	f. E. S/C,	N Date Well Installed
	Section Location of Waste/Sou	Ince	m m d d v v
Type of Well	1/4 of 1/4 of Sec.	,T N. R	E Weil Installed By: Name (first, last) an
Well Code <u>12 / PZ</u>	Location of Well Relative to V	Vaste/Source Gov. Lot Number	<u> </u>
Distance from Waste/ Ent. Stds.] Sidegradient	BOART LONGYERE
Source 80 ft Apply	d 🖬 Downgradient n 🗌		
A. Protective pipe, top elevation	fLMSL	1. Cap and lock?	
B. Well casing, mp elevation _ 4 4 :	3.35 fL MSL	2. Protective cov	
	. []		
C. Land surface elevation _ 4 4 !	2.9.3 ft. MSL	b. Length:	 Steel =
D. Surface seal, bottom	Lor 0. Oft	C. Material	Other
12. USCS classification of soil near screen		d. Additional	
	· · · · · · · · · · · · · · · · · · ·		ribe: <u>3 Bumpen Post</u>
GPCIGMCIGCOGWCIS SMCISCOMLOMHCIO			Bentonite
Bedrock		3. Surface scal:	
13. Sieve analysis performed?	(es 🖬 No		+
	Image: Second secon	If yes, desc 3. Surface scal: 4. Material betwee 5. Amular space bLbs/ga cLbs/ga d% Benu f. How install bf. How install bf. How install bf. How install	Other Ot
2			Bentomite
Hollow Stan Au		SAND	Other
15. Drilling finid used: Water 🗖 02		5. Annular space	al mud weight Bentonite-sand shurry
	ame ■ 99		al mud weight Bemonite shury
			tonite Bentonite-cement grout []
16. Drilling additives used?	es 🖬 No 🗮		Ft ³ volume added for any of the above
		f. How install	· · - · -
Describe			Tremie pumped
17. Source of water (attach analysis, if requ	ired):	. 200	Gravity
		6. Bentonite seal:	a. Benumite granules
		Ъ. □1/4 in.	□3/8 in. □1/2 in. Bemonie chips □
E.Bentonite seal, topfr. MS	_or_24.0ft. 👹		Other 🖸
	-or_29.0ft	7. Fine send mate $\frac{-47}{2}$ b. Volume add 8. Filter pack mate	
F. Fine sand, top fr MS	_or_29.9ft、 X器		erial: Manufacturer, product name & mes
			BADGER
G. Filter pack, topfr. MS		b. Volume add	ded ft ³
			perial: Manufacturer, product name & met
H. Screen joint, top ft. MS	.ar_∠8.9£		AMERICAN MATERIAL
		b. Volume ad	
Well borrom fL MS	<u>33.94</u>	9. Well casing:	Flush threaded PVC schedule 40
			Flush threaded PVC schedule 80
I. Filterpack, bottom ft MS	a 35. off		Other
	20.00	10. Screen materia	
K. Borchole, bottom ft MS	Lm_21.2ft	8. Screen type	
			Continuous slot
LBorenole, diameter _8.3 in.	· ·	\	Other 🗆
	•		<u>- Johnson</u>
M. O.D. well casing _2.35 m.	· · · ·	c. Slot size:	0.0
		∖ d_ Sloued len	
N. LD. well casing _ 2.19 in.			nal (below filter pack): None
	•	FORMATI	on CollAspe Diher
I hereby certify that the information on this	form is true and correct to the	best of my knowledge.	
Signamre (Finn		
Man Jains helekon	NATURAL	RESOURCE TECHNology	Inc.
·		· · · · · · · · · · · · · · · · · · ·	


	Natershed/Wastewater	Waste Management	MONITORING WELL CONSTRUC
	Remediation/Redevelopment		Well Name
• • •	R	□ Nfr. □	w TW
Facility License, Permit or Monitoring No.			
		"Long	u. or
Facility ID		•	Dare Well Installed
	Section Location of Waste/S		
Type of Well	, , , , , , , , , , , , , , , , , , , ,	· · [E Weil Installed By: Name (first, last) an
Well Code 12 / PZ	1/4 of 1/4 of Sec Location of Well Relative to		
Distance from Waste/ Enf. Stds.	u 🛛 Upgradient s		-
Source <u>& ft</u> Apply	d 🖬 Downgradient n		- BOART LONGYERR
A Protective pipe, top elevation	fL MSL	1. Cap and lock	· · · · · · · · ·
B. Well casing, mp elevation _ 1 1 9	59 fL MSL	2. Protective co	
· · · · · · · · · · · · · · · · · · ·		b. Length:	
C. Land surface elevation _ 43.	2.81 fLMSL	c. Material:	
D. Surface seal, bottom fL MS	Lor_O_OfL		
12. USCS classification of soil near screen		d. Additional	protection?
		If yes, des	aire: 3" Bumper Posts
	тосној 📲	3. Surface scal:	Bentonite 🗃
Bedrock			
	les 🔳 No		Other 🗆
	ary □ 50	4. Material berv	ween well casing and protective pipe:
Hollow Stem Au	- 20000 W	3. Surface scal: 4. Material betw SAND 5. Armular space bLbs/g cLbs/g d% Bet cLbs/g d% Bet cLbs/g f. How insta	Bentomite 🗆
Or		SAND	
15. Drilling finid used: Warr 🗆 02	Air 🗆 01	5. Amuiar space	
	inne 🖷 99		gal mud weight Bentomite-sand slurry [] gal mud weight Bentonite slurry []
			ntonite Bentonite-cement grout
16. Drilling additives used?	les 🖀 No		_Fi ³ volume added for any of the above
		f. How insta	· · · ·
			Tremie pumped 🛛
17. Source of water (attach analysis, if requ	ired):		Gravity
		6. Bentonite sea	
		556	□3/8 in. □1/2 in. Bentonite chips □
E Bennnie seal, nop fr. MSI			Other 🛙
F. Fine sand, top	_m_30.0f	7. Fine sand ma	terial: Manufacturer, product name & mest
	-or_30.0ft	7. Fine sand ma <u>4</u> b. Volume au 8. Filter pack m	BADGER
G. Filter pack, top	- 17 Otto Sta	b. Volume a	dded fi ³
• • • • • • • • •	a 34 of	8. Filter pack m	aterial: Manufacturer, product name & mes
H. Screen joint, 100 ft. MSI	Lar_34.9ft		AMERICAN MATERIAL
		b. Volume a	dded fr ³
L Well bonom	-a-31.0#/	9. Well casing:	
	- 29 64.		Flush threaded PVC schedule 80
I. Filter pack, boltom ft MSI	-a-57.5r		Other
K. Borchole, bottom fr MSI	- 39 54	10. Screen mater	
		BL Screen ty	pez Factory au 📕 Continuous siot 🗖
L Borchole, diameter _ 8 3 in.			
	•	h. Mamufacu	Johnson Johnson
M. O.D. well casing _ 2.35 in.		c. Slot size:	0.21
		d_ Slowed le	ngth: _5
N. LD. well casing _ 2 1 C in.		11. Backfill mate	mial (below filter pack): None
			Other 🖸
I hereby certify that the information on this	and the second	e best of my knowledge.	
Signamre //	Firm	• ·	
		Resource Technolog	


	Client		NRT		NC)V -	1 200
	Location	· · · · · · · · · · · · · · · · · · ·	Hutsonville, IL		 		
	Job Name	100 10 10 10 10 10 10 10 10 10 10 10 10 10	Hutsonville Projec	t			
	Job Number		3410-1824		_		
Well/B	oring Number		MW-11	FROMU 			
Date of A	Abandonment		10/03/01				
Reason for A	Abandonment		Study Complete				
Abandonr	nent Done By		R. Radke		_		
Hole Type:	X Monitoring Well		vrillhole	Pumping We	ell		=
Construction Type:	X Drilled	Driven		Other			_
Formation Type:	X Unconsolidated		Bedrock				
Sealing Method:	X Gravity	L F	Pumped	Other			_
Sealing Materials:	X Bentonite Chips		Cement-Bent Grout	Other			_
Sealing Material		From (ft)	To (ft)	Quantity	Galior Bag(_
Topso	il	Surface	0.5		Gallor	n(s)	_
Bentonite	Chips	0.5	16.2	1	Bag((s)	_
							-
Well Information O	NLY re from ground surface			<u> </u>	· · · · · · · · · · · · · · · · · · ·		=
	e nom ground sanace			-	Yes	No	-
Total Well Dept	h <u> </u>		So	creen Removed		x	_
Casing Diamete			н. С	Overdrilled		x	-
Casing Dept				ng Left in Place	<u>x</u>		-
Depth to Wate	er 8.95 <i>Ft.</i>		Casing Cut	Below Surface	<u>x</u>		


APPENDIX A-3


SLUG TEST DATA



APPENDIX A-4

GROUNDWATER SAMPLING SOP (AE)

Electronic Filing - Netres 2011 Jun Louge Courses 09-1, Exhibit 3

Purpose:

The procedure for Hutsonville Power Station's Monitor Well sampling is based on IEPA Sampling Procedure Instructions. These instructions are prepared to inform owners/operators of treatment, storage and disposal facilities of proper water sampling procedures. It is expected that by complying with these procedures it will help in obtaining analytical results consistent and comparable with those obtained by the Agency. The Monitoring Well sampling is completed on a monthly basis for Monitoring Wells 1 - 5, pH readings and sample filtration is complete at Hutsonville with the samples shipped to the CIPS Central Lab-Springfield (tested for TDS, Boron, Calcium, Hardness, Manganese, Sulfate, and Alkalinity).

Equipment Needed:

Pump and Tubing (Asco portable pump) Monitor Well Sample Bottles (5 x 1 liter) Water Level Indicator Data Entry Sheet Truck, Car or 12 V Battery Timer/Stopwatch/Secondhand on watch Depth = Volume Data Sheet Adapter/Connector and cord used to hookup the battery to the pump pH Meter/Probe Cooler w/ ice (temperature >39*F)

Sampling Procedure:

- 1) Connect the Adapter to the battery and pump.
- 2) Use the Water Level Indicator to find the distance to the top of the water in the well.
 - a) To do this, slowly lower the Water Level Indicator probe into the well. When the probe reaches the water you will hear the Water Level Indicator buzzer, indicating that water has been reached. When you hear the buzzer, pull back until it stops, and lower slow until the buzzer sounds again.
 - b) Read the increments on the wire from the North side of the casing. (Increments in 100^{th} of an inch).
 - c) This is the first entry on the Data Entry Sheet. (See below)
- 3) From this entry, calculate the volume of water in the well, by subtracting it from the well depth + casing height. Use the data sheet when calculating. From this result, use the chart to calculate the volume of water (gals) in the well. Record this value on the data sheet. If the value does not appear on the sheet, the following calculation may be used to estimate the volume of water in the well.

feet of water x 0.1632 = est. volume of water in the well

- 4) With the pump on, drop the pump tubing into the well until the pump starts to pump water.
- 5) Pump at least one well casing volume of water from the monitor well prior to obtaining a water sample. This is to remove stagnant water in the well and obtain water more representative of the monitored aquifer.
 - a) To do this, fill the 1L Monitor Well Sample Bottle, and note the time it takes to fill it. Multiply the time by 4. This is the time it takes for the pump, at a designeated setting, to pump 1 gallon of well water.
 - b) Multiply the number of gallons of well water by the time it takes to fill one gallon. This is the amount of time it takes to pump the volume of well water out. Pump, at least, this volume of well water out. Record the amount removed on the data sheet.
 - c) After removing the required volume of well water, the well should be sampled while it is recharging. The rechargeing of Hutsonville's wells range from instantaneous to approximately 15 min. depending on how dry the season has been.
- 6) Rinse the sample bottle at least 3 times with well water, fill, measure the pH, record pH, and place in a cooler of ice (only necessary if the temperature outside is more than 39° F).
- 7) Pull tubing out while pump is running to remove most of the remaining water in the tubing.
- 8) Repeat steps 1-7 for all remaining Monitor Wells (1-5).

Filtering Procedure:

- 1) All groundwater samples to be analyzed for <u>inorganic</u> parameters (metals) are to be filtered through a 0.45 micron Cellulose Nitrate filter membrane.
- 2) Obtain a clean 1 L fliter flask for each sample (5), a clean funnel, and a vacuum pump.

Filtering Procedure: (continued) Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3

- 3) In order to equilibrate the filter with sample water, allow approximately 100 mls of sample (well mixed) to pass through the filter and into a separate filter flask. Once equilibrated, place the filter in the proper, clean, filter flask.
- 4) Connected the filter to the flask; connect the pump to the flask, and turn on the pump.
- 5) Empty each monitor well sample (well mixed) into its respective filter.

Preservation Procedure:

- 1) Empty the filtrate into its sample bottle using the following preservative techniques (CIPS Chemistry Program Manual).
 - a) Metals—10 drops of concentrated HNO₃ in 80-100 mls of sample will drop the pH to less than 2 as required for preservation (use a small, metals bottle).
 - b) All other monitor well preservative requirements are time related during storage at 4°C (use 1L bottles). *TDS needs to be analyzed within 7 days.
- 2) Label all the bottles appropriately, and fill out the PDC Chain of Custody Form.
- 3) Store the sample in a 4°C refrigerator until shipped to PDC Labs for analyses, which at that time will be trasferred into an ice cooler/chest.

Hutsonville Monitoring Well Samples

Date:

Collected by:

MW #	Depth to top of Water	Calculations	Volume of Water in Well	Quantity Discharged before sampling	рН
1		11.50 			
2		21.25 			
3		12.42 			
4		18.17 			
5		20.67 			

Remarks:

':\1300\1375\6_1 Cover Alternative Analysis\1375 App A4 MW Sampling.doc

.

.

. •

.

APPENDIX A-1

SOIL BORING LOGS

ÇĹ		OG	 O F	BOR	IN			19	09 0 110 0	DIS DRILLING CO AKWOOD AVE. FON, ILLINOIS 6170 9) 662-5968
	CTED WITH			—		BO	RING N	10		
LOCATIC	PEn PLAN			•••••••••••••••••••••••••••••••••••••••			NTRAC	T NO.		
DATUM_	HAMMER WT.	140#		HAMMER I	ROP_	<u> </u>	30"	_ но	LE DI	A8"
DATE ST	E ELEV COR	E DIA PLETERIA	<u></u>	-14-84			CASING			DHSA
ELEV.		LETRATA				MPLE				
	DESCRIPTION		the second value of the se	BLOWS FT.				QP		NOTES
456.5		0.0	30	-					•	
455.6	See #A	0.0				·				
<u>453,4</u>	Lt. brn. sandy silt, wf. clay, occas. f-c sand, occas. f. grave roots moist-v. moist	3.1		1-2-3	1	ss	ייאך	1.(2.4		
	It. br. m-c sand, wf. occas. f-m gravel tr. silt		5	6-5-7	2	ss	17		-	
450,1	wet	5.4	-							
448.4	Lt. brn. sandstone moist	8,1	-	6-54- 40/2"	- 7	ss	14	2.2) -	
447.4	Ltgray sandstone	9.1	-	65-35,	· 4.	នទ	7			WATER 2-14-
•	END OF BURING 9.1'			געני-גע ו"					-	DD 6.0 8:30 BAR 7.0 8:55 AAR WL 6.5 9:0
		-	-							F-c gravel Screen 9.01. 2" PVC Pipe
			<u> </u>							Gravel 9.1' Bentonite 3 Plum 1.5'-su Water level
										#A Blk. clay wf. tr. f.
		-								ocras. org: fibers tors moist

LOG OF BORING

CENTRAL ILLINOIS DRILLING COMPA 1909 OAKWOOD AVE. BLOOMINGTON, ILLINOIS 61701

(309) 662-5968

CONTRACTED WITH HANSON ENGINEERS	_ BORING NO	M-2
PROJECT NAME HUTSONVILLE POWER STATION	CONTRACT NO.	
LOCATION PEH PLAN	<u>.</u>	
DATUM HAMMER WT 140# HAMMER DROP.	30" HOLE DIA.	8"
SURFACE ELEY CORE DIA	CASING	· · · · · · · · · · · · · · · · · · ·
DATE STARTED 2-10-84 COMPLETED 2-10-84	DRILLING METHOD_	HSA

ELEV.	DESCRIPTION	STRATA				AMPL				NOTES
			1	BLOWS FT.	NO.	TYPE	RECOV.	ΩP		
453.3		0.0	30						1	
<u>-2d.Y</u>	See #A	-0.4				· ·	i i			
751.2	Brn. silty sand fill v. moist	2.7	-							
	Brn. m-c send, wf. m-c gravel tr. silt		~	8-8-6	ר 	SS	<u>ר</u> ייאינ	2.4	- -	
	v. moist		5	7-5-3	2	ទទ	17			
			-							
144.9		8.4	- ·	3-3-3	_3	·ss 、	16			WATER 2-10-8
	Brngray m-c sand, wf. m. gravel		- 	3-4-7	LĻ	ss	14			BAR 11.0 10: AAR WI 7.0 2:10
	wet		-			•				Screen 18.0- 2"PVC pipe 5
			-	8-7-9	5	<u>e e</u>	17			3.0' surf Gravel 21.5' Bentonite 4. Plug 2.0'-su
	Brngray m-c_sand,	<u>14.1</u>	- 19	6-8-10	5	85	. 1:7			#A Blk. coa refuse "" wf
	wf. f-m gravel		-	-						occas. silt wet
-36.0	wet	17.3		10-13-	?	85	17			
	Gray silty clay, wf. tr. f. sand, occas. f. gravel		-	13.						
	till moist		-20	5-10- 13	8	នន	18	4.2		

]	I		÷.		B O J		CEN	1	LINOI 09 OA	S DRILLING KWOOD AVE. DN, ILLINOIS 6 662-5968	
	CTED WITH	HANSON EN	GINE	EERS					ING NO		M-2	
PROJECT	T NAME	HUTSONVILI	E PC		STATI	ON						
		<u>Per PLan</u>			<u> </u>			201	<u> </u>		Q11	
SURFACE	E ELEV.	HAMMER	COR	E DIA		•		C	ASING			
ATE ST	ARTED2	-10-84	COM	PLETED.	2_	10-84		D	RILLING ME	тнор.	HSA	
ELEV.		DESCRIPTION			DEPTH		54	MPLES	5		NOTES	
453.3	·····			DEPTH		1	<u>.</u> NO.	TYPE R	ECOV. QP			
431.8				27,		f	<u>, o</u>	′ss	18" 4.0			
	END OF	BORING 21.	5 '		\vdash							
						•						
•												
	·										·	
						•						
						:						
•						•						
		·							.			
		•										

			·						
	Electronic Filing - Received	l, Clerk	s' Offi	ce, Augu	st 11	, 2008	8AS 09 [.]	-1, Exł	nibit 3
	Ī		··· .			CEN	· 1	909 OA	S DRILLING COMP
СĹ		OG	OF	BOR	IN	G	BLUU		DN, ILLINOIS 61701) 662-5968
	CTED WITH HAMSON FINGTIN					. BORI	NG NO		2. o
PROJEC	T NAME <u>HUTSONVILLE PC</u> DN <u>PCH PLAN</u>	WILE S	1.9.1.1	<u>ON</u>		L CONT	FRACT NO	•	
	HAMMER WT.	י <i>ד</i> יי#		HAMMER I	DROP_	30	"H		8"
SURFAC	E ELEV COR	E DIA		•			SING		
DATE ST	ARTED 2-0-RL COM	PLETED_		-0-84		DF	ILLING M	ЕТНОД.	HSA
ELEV.	DESCRIPTION	STRATA				MPLES			NOTES
45 2./		1	1	BLOWS FT.	NO.	TYPE RE	COV.		
451.7	See #A	8.2	30						
			-						
			F	4-6-8	· 1	ss	14"		
	Eust brn. silty sand,		F						
				4-3-4	2	ss :	12		
	fill v. moist		-5			. הם	10		
45.8		K.3	-						
	Brn. 1-C gravel, wf.	<u>~</u>							
144.5	m-c sand, occas. sandstone wet	7.6	-	8-19-	2	sŝ I			WATER 1-9-84
		•	-	1.1		55			DD 5.5' 2:301
443.2	F-m sand V. moist	8.0							BAR 6.0' 2:4
112-1	See #P	0.4	-	_	1.1				AAR

		DEFIN	JUALE	BLOWS FT.	1 40.	TTPE	RECOV.	 			
452.1		0.0	30		ļ			1		1	
451.7	See #A	8.2	$\frac{1}{1}$					Į			
									1		
			Γ								
1 1											
			L	4-6-8	. 1		~ 1. #				
1				4-(-0	· 1	ss	14"		l		
	Rust brn. silty sand,						•				
	mase bin. Siley Sanu,		-					1		1	
				4-3-4	2	នន	16				
	fill v. moist		-5				-0				
1											
00		<i>K.</i> 3									
445.8	· Ban ·	···· · · · · · · · · · · · · · · · · ·									
1 1	Brn. 1-C gravel, Wf.										
	m-c sand, occas.										
444 5	sandstone wet	7.6	-	8-19-	2		- 0			WATER 1-9-84	
		<u> </u>		r	-3	55	18				
1 1	-	•	~	3.1				i		DD 5.5' 2:300	m
10000	F-m sand	8.0	1	ŀ		1				BAR 6.0' 2:45	n
443.2	v. moist										Ċ,
242.7	See #B	0.4	-	15-85	1	55	7.0			AAR	
1						55	1/		[VIL 5.0' 4:45	D
			10	5"					•		
! [END OF BURING 9.4"					1					
1					1				·		
			-			1		Í	1		
			-			1					
				.		.		1		#A Blk. coal	
		Ī	-	1							
1 1									1	refuse, 4" ¢i:	<u>ר</u>
			-				1			wf, silt	
1 1				1			i i			fill v. mois	÷
.					Ì					TATT V. MOTS	ι
1	·	ł	-	1							
1				1		1		ł		#B Brn. sands:	÷
	1		_15	Í		1				wf. f-m sand w	
			-						•		•: •
		ļ			1		·			, i .	
						1	1			Screen 9.4 -4	L,
· · .	1			ł						2"PVC Pipe 4.	
								•			-
											-
				l						Gravel 9.4 -4	•
				•			1	-	ŀ	Bentonite 4.0	•
				l.						2.5	
				1		·					
									1	Plum 1.5'-sur	۰ſ
ł				· ·				1		Grout 2.5'-1.	5
	l.								.	4"standpipe 3	
.		. '								- A Schnoptbe 3	•
	•	·	1				.		1	3.01 5	t
1							1	1	1	· · · · · · · · · · · · · · · · · · ·	-

LOG OF BORING

CENTRAL ILLINOIS DRILLING COMPAN 1909 OAKWOOD AVE. **BLOOMINGTON, ILLINOIS 61701** (309) 662-5968

HSA

			N. LL	
				·
		•		·

CONTRACTED WITHENGINEERS	BORING NO.
PROJECT NAME HUTSONVILLE, POWER STATION	CONTRACT NO.
LOCATION PER PLAN	
DATUM HAMMER WT. 140# HAMMER DROP_	30" HOLE DIA. 8"
SURFACE ELEV.	CASING

DATE STARTED 2-13-84 COMPLETED 2-13-84 DRILLING METHOD

ELEV.	DESCRIPTION	STRATA	DEPTH		s,	MPL	ES			
		DEPTH	SCALE	BLOWS FT.				(ନ୍. ^p		NOTES
754.4		0.0	30	ĺ						
<i>453.1</i>	Blk. asphalt 1.0" F-m gravel 1.0",brn, algyov filt wf. f-m gravel pavement mater	1.3								
251.3	ials moist Blk. silt, wf. f-c pravel fill moist	3.1>	-	5-5-7		55	16"			
48.5	Brn. silty sand, wf. occas. f-m gravel moist	۲.0	5	4-3-3	2	ទទ	18	0. <i>9</i>		
46.2	Br. f-m sand wf. silt v. moist	⁸ .2	-	3-3-4	<u>.</u>	ຣຣ	<u>18</u>			WATUR 2-13-84
43,5	Br. f-m gravel, wf. c-m sand, silt wet	10.9	- 10	3-3-3	<u></u>	¢,	17	0.6	•	DD 8.0 9:45ar BAR 8.0 10:30 AAR VL 7.5 11:4
	Ltbr. sandstone		-	23-77/	5	55	בר			Screen 12.5 2"PVC Pipe 5.
41,0	END OF BORING 13.4"	<u>13.4</u>	-	100/4"	6	ss	4	4.5	t	Gravel 13.4 Bentonite 4.0
			-15						•.	Plug 2.0'-sur
		. •								
						+				

7

CENTRAL ILLINOIS DRILLING COMPAI 1909 OAKWOOD AVE. BLOOMINGTON, ILLINOIS 61701 LOG OF BORING

(309) 662-5968

CONTRACTED WITH HANSON ENGINEERS PROJECT NAME HUTSONVILLE POWER STATION	BORING NO
LOCATION PER PLAN	
DATUM HAMMER WT. 140# HAMMER WT. 140# SURFACE ELEV. CORE DIA. 2 DATE STARTED 2-13-84 COMPLETED 2	AMMER DROP HOLE DIA 0"
DATE STARTED 2-13-84 COMPLETED 2.	-13-84 DRILLING METHOD HSA

ELEV.	DESCRIPTION	STRATA	DEPTH		s	AMPLE			
				BLOWS FT.				ରP	NOTES
452.3		0.0	30						
	l" coal refuse, brn. c	lavev							
	silt, wf. f.c gravel	1.2							
2/2/	occas. organic fibers					•			
	fill moist								
	PITT MOTEC		-	4-5-5	٦		<u>،</u> 14	. !	
an n	See #A	3.1				00	با [·	
			-						
	Brn. f. sand, wf.			ſ				.	
	occas, c. sand, f.		-						WATTER 2-13-84
	gravel moist v.								_
	moist		-5	3-2-4	2	នន	17	0.4	D. 8.0 2:50 m
46.4		5.9	-		İ				
			- [· •					BAR 11.0 3:50
	Br. f-m sand, wf/ c						ł		AAR WL 6.5' 5:45
	ຮຼກd	-	-]	WL 0.5. 5:44
			į	3-3-4	3	ទទ	ן 8 ן	0.4	
93.9	wet	~ · ·	-					1	
73.9		<u> </u>		H				·	Old metal dra
		-	-					1	pipe 1.0' wes
	Brn. m-c sand, wf. f-]					boring runnit
. 1	c gravel occas. blk.		_10	3-4-4	4	នន	18	0.9	from moss to
41.7	coal refuse mottling	10.6					.	1.4	tion
		~~~~	_						
	Brngray m-c sand,	Γ	-	Г		·			
	wf. f-m gravel	Ļ	-		ļ				Screen 18.0'+
				0-3-3	5	នន	16		2" PVC pipe 5
	wet								3.0' stic
ļ		ľ	-						Gravel 18.0'
				[		· I			Bentonite 4.0
.		ŀ	-						Backfilled 19
				5-6-17	6	55	12		18.0' Wf. Fr
		ŀ	-15	· · · · · ·				İ	Plug 2.0'-sur
36.1		14.2			1		.		-4" standpip
2017	T)	/`	-	-		•			509.00 QL D
235.4	Brnaray sandstone, w	16.cl		16-15-	7		12		
1	TLA FIRITI ACCUSA NACI		-						#A Brn. grav
	sand v. moist			27	<u>-7</u>	្ខន	6		m-c sond, w
1	Gray sandstone	-	-	•					f-c gravel,
				ł.					white rock f
33.1		20.2	-	30-70, ²	8	នន	8	4.4	t wet
T	END OF BOHING 19.2'			2"					
		Ļ	_20			·			
		•	.				•		
1	•	·							



## LOG OF BORING

•

CENTRAL ILLINOIS DRILLING COMPAN 1909 OAKWOOD AVE. BLOOMINGTON, ILLINOIS 61701 G (309) 662-5968

.

• • 1					
CONTRACTED WITH	SON FINGINEER	S		BORING NO.	m-6
PROJECT NAME	DNVILLE POWL	R STETI	ON	CONTRACT NO.	
LOCATION PE.F	<u>PLAN</u>		· · · · · · · · · · · · · · · · · · ·		·
DATUM	HAMMER WT.	140#	HAMMER DROP_	30" HOLE	DIA
SURFACE ELEV.	CORE DI	Δ .	•	CASING	
DATE STARTED 2-0-84	COMPLE	TED_2-9	_84	DRILLING METH	HODHSA

ELEV.	DESCRIPTION	STRATA	DEPTH		s	AMPL	ES		NOTES
		DEPTH	SCALE	BLOWS FT.	<u>ю.</u>	TYPE	RECOV	<u>0</u> 2	NOTES
438.9		10.0	30						
437.7	Brn. cleyey silt wf. tr. f-m sand, occas.	1.2	L						
435.5	orranic fibers moist Brn. clovey silt, wf. f-m sand, occas. f gravel moist	3.4	-	-2-4	<u>٦</u>	S.c	13"	1.2	
4-33.3	Gray-brn. silty clay, wf. tr. f. sand, occa f. gravel moist	5.6	- <u>-</u> 5	3-4-5	?	នទ	16		WATER 2-0-84
431.6. <del>731.0.</del>	Brn. f-c fravel wf. clay, c. sand Br. sand, tr. sandsto		-	8-8					BAR 9.0 ]0:30a AAR WL 6.0 l:00pm Screen 11.4'-5
30,5	Br. f-m sand wet Lt. br. sandstone, wf f. sand			80-20/ l"	4	, SS	7		2" PVC pipe 5. 5.0' sti Gravel 17.4'-4 Bentonite 4.0' Plug 2.0'-surf
² 27.5		<u>11.4</u>	-	100/4.	<u>5 5 -</u>	SS	4.5		Standpipe 3.0
	NED OF BORING 11,4'		-						
			<u>ר ר</u>						•
	- - -		-						
			- _ 20	•					

ĘĹ		OG (	O F	BOR	: ] ]			19	109 O	NS DRILLING COMPA AKWOOD AVE. ON, ILLINOIS 61701 9) 662-5968
	CTED WITH HANSON EN			ON						<u>M-7</u>
LOCATIO	N PER PLAN		A 2							
SUPEAC	HAMMER WT E ELEV CORI			HAMMER			CASING		LE DI	A8"
DATE ST	ARTED 2-8-8-4 COM		~	-8-84			DRILLI		тнос	HSA HSA
ELEV.	DESCRIPTION	STRATA				AMPL				NOTES
437.9		0.0	<u>i</u>	BLOWS FT	. NO.	TYPE	RECOV.	<u> </u>		
436.5	Br. clayey sfit, wf. tr. f. sand, occas.	<u>].4</u>	30							
434.0	Br. clayey silt, can Wf. occas. blt. cin- dona fill moist			3-2-7	<u>ק</u>	55	17"			
	Lt. brnbrn. sandy silt, wf. clay		_5	2-3-4	2	SS	14	<b></b>	•	
429.8	moist	8.1	-	3-3-5	3	<b>S</b> S`	16	i.7		WATER 2-8-84
	Brn. sandy silt, wf. tr. clay		<u>-1</u> -0	2-2-3	4	ss	14	1.2		BAR 11.5 3:001 AAR WL 11.5 5:151
425.0	verv moist	12.9	-	0-0-3	5	ខ្លួ	15	1.3		Screen 25.0'-1 2" PVC pipe 19 5.0' stick u Gravel 25.0'-1
Certie	Brn. silt, wf. f.									Bentonite 14.0 12.0 Plur 2.0'-surf
/	very moist-wet		<b>-</b> 2.5	2-2-4	<u> </u>	SS	15	1.7	·•	Bentonite-clay 12.0'-2.0' Standpipe 3.0' 5.1' stick
<i>420.3</i>		<u>17.6</u>	-	2-2-3	2	SS	18	1.4		
			-20	0-1-3	Q.	S?	17	1.2		-

.

#### eived, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3 Ele



ELEV.

437.9

4129

CENTRAL ILLINOIS DRILLING COMPAN 1909 OAKWOOD AVE. BLOOMINGTON, ILLINOIS 61701 LOG OF BORING

_____ BORING NO. ______ HANSON ENGINEERS CONTRACTED WITH ____ PROJECT NAME HUTSONVILLE POWER STATION _____ CONTRACT NO.__ LOCATION _____ PEH PLAN _____ HOLE DIA. _____ 8" DATUM______ HAMMER WT. 140# HAMMER DROP 30" • SURFACE ELEV. ____ ____ CORE DIA.___ __ CASING_ DATE STARTED 2-8-84 COMPLETED 2-8-84 HSA __ DRILLING METHOD____ STRATA DEPTH SAMPLES DESCRIPTION NOTES DEPTH SCALE BLOWS FT. NO. TYPE RECOV. OP 0.0 -30 416.5 Brn. sandy silt wf. 121.4 lenses, f. sand wet Brr. f. sand 414.5 wet 23.4 Brn. f-c gravel, wf. m-c sand, tr. silt 7-7-9 9 ss 12 25.0 wet

END OF BORING 25.0'

· .		1			
	1	1	1 · ·	 1	

(309) 662-5968

ect	tro	ni	C F	ili	ng	-	Re	Ce

Electronic Filing - Received	, Clerks' Office,	August 11	, 2008AS 09-1	, Exhibit 3
------------------------------	-------------------	-----------	---------------	-------------

CENTRAL ILLINOIS DRILLING COMPAN 1909 OAKWOOD AVE. BLOOMINGTON, ILLINOIS 61701 LOG OF BORING

(309) 662-5968

CONTRACTED WITH HANS	SON ENGINEERS		BORING NO.	<u>M-8</u>
PROJECT NAME HUTSONVILL	LE POWER PLANT		CONTRACT NO.	
LOCATION PER PI	LAN	·		
DATUM HAN	MMER WT. 140#	HAMMER DROP	30" HOLE DIA.	8"
SURFACE ELEV.	CORE DIA	•	CASING	
DATE STARTED 2-7-84	COMPLETED	2-7-84	DRILLING METHOD	HSA

ELEV.	DESCRIPTION	STRATA	DEPTH		s	AMPL	ES		NOTES
		DEPTH	SCALE	BLOWS FT.	NO.	TYPE	RECOV.	୍ରମ	NOTES
939.9		0.0	30			1			
438.1	Brn. clayev silt, with tr. f. sand, occas. organic fibers moist	13	-						-
436.3	Brn. silty sand	3.1	_	2 <b>-</b> 5-7	<u> </u>	SS	18"	1.6	
	Brn. silty sand, wf. tr. f. sand								
	moist'		5	2-3-5	2	SS	17	1.4	
431.0		8.4	-	3-5-5	3	នន `	1.8	3.2	WATER 2-7-83
428.5	Brn. clayey silt, wf. tr. f. sand moist	10.9	-	2-3-3	<u>4</u>	ss [.]	13	1.8	DD 13.0 11:45 BAR 19.0 3:45 AAR WL 12.0 8:30 2-8-84
	Brn. gray clayey silt wf. tr. f. sand, sm. gray silt pockets		-	2-2-2	-5-	SS	.18	1.2	Screen 21.5'- Gravel 21.5'- Bentonite 15.
	moist		- 5	2-2-3	6	SS	18	1.7	Clay & Benton: 13.5'-4.0' 2" PVC pipe 16
922.0	Brn. sandy silt, wf.	17.4		1-2-2	7	SS	18	1.2	4.9' stick up Bentonite ceme grout 4.0'-2.0 Plug 2.0'-surf Standpipe 3.0'
<u>719.6</u>	occas. f. sand lens wet very moist	<u>19.</u> 8	- <u>-</u> 20	0-1-2	<u>م</u>	SS	18	1.2	Baled well at 5:15pm 2-9-84 11.0' water le

				L	. O G (	O F	BOR	11		R	19	109 OAI	S DRILLIN (WOOD AV N, ILLINOI 662-5968	Έ.
	TED WI	тн		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	INFERS				во	RING N	IO	M-	<u>م.</u>	
ROJECT			TOTO	DIVITIJ.	E POWER	STA	TION							
	N N	<u> </u>			140#				30"			LE DIA.		N#
URFACE	ELEV			co	DRE DIA.		•			CASING				
ATE STA	RTED_	2-7-	-84	cc	MPLETED_		2-8-84		I	DRILLII	NG ME	тнор_	HS	SA
ELEV.		DES	SCRIPTIC	אמ	STRATA				AMPLE			· · · · · · · · · · · · · · · · · · ·	NOTE	<u>-</u> 5
139.9-		<del></del>	·····			1	BLOWS FT.	NO.	TYPE	RECOV.	QP			
217.9	Br. s	ilty	sand	wet	0.0	30	0-0-0	ļ	នន	18"	1.			
						-								
	END C	F BOI	RING 2	21.5'										
						Γ								
						-					_			
						_					.•			
				•										
		-												
										·				
.														
							-							
											•			
8														
							х.							
				•									•	
		•												
		•												
ł														

.

٢Ĺ	Electronic Filing - Rece	eived, Cler					В	19	109 OA	<b>xhibit 3</b> S DRILLING COMPAN KWOOD AVE. DN, ILLINOIS 61701 ) 652-5968
	TED WITH HANSON EN	TNEERS								M
CONTRAC	NAME HUTSONVILLE PO	OWER STA	TION	Ţ						
LOCATIO	N33.0' E. 0	F STARE		·····	•					
	HAMMER W			HAMMER	DROP.	3	0"	но	LE DIA	
DATE STA	C ELEV C	ORE DIA OMPLETED_		2-14-8	34		CASING DRILLI			HSA
				1						
ELEV.	DESCRIPTION	DEPTH		BLOWS FT		TYPE		QP		NOTES
852.0		0.0	30							
451.2	See #A	0.8								
450.7	See #R	<b>1</b> 3	Ŧ							
448.6	Brn. silty sand, w coal refuse, occas f. gravel fill mo	f.	-	5-10-1		SS	18"	2.3		#A Brnblv f- sand, wf. coal
<u>446.1</u>	Brn. sandy silt, w: f-m gravel concrete fill moist	e <u>5.9</u>	5	4-19- 18	<u></u>	SS	14			refuse, 5.0" si wf. f. sand, oc organic fibers fill wet
443.9	Brn. sandy silt, wi ash coal refuse, to clay fill moist Gray sandy silt, wi	r.	-	2-1-2	· "	ss`	16	2.2		#B Brn. f-m sa wf. silt fill moist Water 2-14-84
441.4	occas. f. gravel wet	10.6	10	2-2-1		SS	10	1.0		DD 8.0 1:15pm BAR 17.0 2:30pm AAR WL 9.0 4:15pm
	Brn. f. sand saturated			0-1-1	-5	SS	8			Concrete fragme 3.5'-4.0'
<u>438,6</u>	Gray clavey silt, f. sand, occas. f. rr vel	<u></u>	- 1 5	0-3-3	6	-	14	2.3		Cobbles, concre 2.6'-3.0.
<u>436.5</u> 435.6	Br. m-c.sand, wf.	<u>5.5</u> f- <u>T6.4</u>			7	•	13	4.5		Screen 18.5"-8. 2" PVC pipe 8.5 3.0 stick un Gravel 18.0"-8.
<u>433.2</u>	Brn. sandstone	<u>8_8</u>		18-72- 22/1" 100/3'		SS.				Bentonite 8.0'- Cement Grout 6. 4. Plug 2.0'-surfa Standpipe
	END OF BORING 18.8	•	20							o rano ni pe

Dri	ller			· · ·	— T	Logged	by:			End D	Date	Depth to Wa	
	AEC, Ind	dianap	olis, I	N		Stev	e Mueller/STMI			10	/6/98	~6 Feet	
Bo	ring Dep	oth	Bo	ring	Diame	eter	Surface Elev	ation	Drill Metho	d		Northing	
	25.5 Fee	et		8* In	ches		453.7 Fee	t	HSA/air-	rotary		3860.230	
We	ll Depth		We	ell Dia	amete	r	TOC Elev.		Sample Me	thod		Easting	
	25.1 Fee	et		2-in 1	.D.		455.28 Fe	et	2-ft. split	-spoon		3952.034	
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Descrip	tion		Wall Comulation		Comments	
$\bigotimes$	1, 2, 3, 6		75		ML	trace	DY SILT, little fine coal fragments,	e-grained g medium sti	ravel, ff, dark			5-ft by 4-in square stick-up casing to	
$\bigotimes$	4, 4, 6,		-				n, moist (topsoil) D, well sorted/rou	inded fine-	grained		0 0	ft; concrete seal 0	
$\bigotimes$	4, 4, 0,		88			quar	z, loose, light bro	own, to med	lium	· : e		-	
X	1, 2, 3,		75		SP	DION							
$\bigotimes$	5												
XX	2, 2, 2, 10		63	0.000			Y SAND & GRAV		sorted				
$\bigotimes$	2, 2, 3,		-		SW-	med	um-grained sand ngular to subrour	, fine-grain	ed			Bentonite/cement	
$\bigotimes$	2, 2, 3, 5		50		GW	light	gray, saturated	iu gravei, ii	JU3E,			3-16 ft; 1/4-in ben chips 16-17 ft	
$\propto \times \times$				000		san	DSTONE, fine-gr	ained ouar	17			Chips 10-17 h	
						SAN		anieu, quai					
			-										
									:				
		15							:			Sch. 40 PVC cas	
												flush-threaded to C factory-slotted F	
					Ss							screen 20.1-25.1	
												fine silica sand 17 #5 silica sand pac	
		20										25.5 ft.	
			-										
		 25	1									* 4-in diam. bore	
			]			- END	OF BORING - 2	5.5 feet -				drilled 16-25.5 ft (	
												air-hammer.	
			-										
			-										
		30	-										
		<u> </u>											
İ		_	]	1									

Dril	ler					Logged	=		End D		Depth to Wat
	AEC, Inc						e Mueller/STMI			/5/98	~10 Feet
	ring Dep			-	Diame	ter	Surface Elevation	Drill Meth	od		Northing
	45.0 Fee			8 Inc			437.5 Feet	HSA			3175.915
	I Depth		1		amete	r	TOC Elev.	Sample M			Easting
	44.3 Fee	et		2-in I	.D.		438.45 Feet	2-ft. sp	lit-spoon		5676.110
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Description		Well Completion		Comments
~	1, 1, 2, 3	   - 5 	75			CLA roots satur	YEY SILT, medium plastic fibers, soft, medium brow ated below 10 ft.	ty, trace n, moist,			5-ft by 4-in square stick-up casing to ft; concrete seal 0-
××	1, 1, 1, 2	10	100		ML						
	1, 1, 2, 3	15 15 	100								
***	0, 0, 1, 2	20 20 	100		SP	fine- silt a	Y SAND, well sorted/round grained, quartz, grades fro bove, loose, medium brow rated	ded, m clayey n,			
3, 3, 4, 9		 25 	75			medi coar suba	Y SAND & GRAVEL, well ium-grained quartz sand, t se sand, fine-grained angu ingular gravel, medium der rn, saturated	race Ilar to			Bentonite/cement of 3-35 ft.
*	5, 8, 6, 8	75				:	7				

Dri						Logged				End Date	Depth to Wa
	AEC, Inc						e Mueller/STM		- <u></u>	10/5/98	~10 Feet
	ring Dep		Bo	ring l		eter	Surface Ele		Drill Metho	d	Northing
	45.0 Fee		14/-	8 Inc			437.5 Fe TOC Elev.	et	HSA Sample Me	thad	3175.915 Easting
	II Depth		VVe	e <mark>ll Dia</mark> 2-in I		er	438.45 F	aat	2-ft. spli		5676.110
	44.3 Fee			2-10 1	.D.		430.431	561	<u> </u>		
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Descri	ption		Well Completion	Comments
	sand heave										Sch. 40 PVC c
											flush-threaded to
	and ave	-40-	0								screen 39.3-44.3 fine silica sand 3
											#5 silica sand pa 45 ft.
			-								
X	16, 25, 7, 11	 45	75		ML	CLA	YEY SILT, medi	um plastic	ity, trace		
$\bigotimes$	7, 11						YEY SILT, medi i, stiff, brown, m OF BORING -7	oist 15 feet ⁻ -			
			-								
			1								
			-								
			-								
			-							F	
	 	┝ -	-								
			1								
		60									
			$\left  \right $								
			1								
		65	1								
		L -	_	1							
			-								
		⊢ -	-	1		1				1	1

Dril						Logged				5 6997, Detchi 10/7/98 End Date	Depth to Water
	AEC, Inc	dianapr	olis, l	N	1		e Mueller/STN	MI	I	10/7/98	~2.5 Feet
	ring Dep	i	·		Diam	L	Surface Ele		Drill Metho		Northing
	11 Feet			8 Inc			452.9 F€	eet	HSA		4730.478
	ll Depth		1		amete	ər	TOC Elev.		Sample Me		Easting
	10.7 Fee	st	ļ;	2-in	D.	1	454.23 F	Feet	2-ft. split	t-spoon	2559.807
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Descr	ription		Well Completion	Comments
$\boxtimes$	1, 2, 2,		50	m	ML		YEY SILT, vege	etated with g	rass, soft, oil)		5-ft by 4-in square stee stick-up casing to ~1.5
$\bigotimes$	2 1, 2, 2,	2 50 dark brown to black, moist (topsoil) SILTY SAND, well sorted/rounded, fine-grained quartz loose vellowish							ed, wish		ft.
×	1, 2, 6, 25		100			Satur	ated below ~2.	5π			Bentonite/cement grou 0-3 ft; 1/4-in bentonite
$\bigotimes$	5, 20, 25, 50		63		SP	fine-g	Y SAND, well s grained, quartz gray to rust col	z, laminated, o lored, predon	dense, minantly		chips 3-4 ft.
××		  10 			Ss	(wea SANI	gray below 7.5 thered bedrock DSTONE, fine- OF BORING -	k) -grained, qua	1		Sch. 40 PVC casing flush-threaded to 0.01-i factory-slotted PVC screen 5.7-10.7 ft; #5 silica sand pack 4-11 ft

	riller					Logged			End Date	Depth to Wate
	AEC, In		· · · · · · · · · · · · · · · · · · ·				e Mueller/STMI		10/7/98	~2.5 Feet
B	oring De			•	Diame	eter	Surface Elevation	Drill Metho	d	Northing
	21.5 Fe			8 Inc			452.9 Feet	HSA Semala Ma	thad	4729.427
1	21.3 Fe			11 Dia 2-in 1	imete	r	TOC Elev. 454.65 Feet	Sample Me see MW		Easting 2564.715
				2-111 1		<u> </u>			it log	2004.710
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Description		Well Completion	Comments
					ML	CLA	YEY SILT*, vegetated wit dark brown to black, mois	n grass,		5-ft by 4-in square st
			see			SILT	Y SAND*, well sorted/rou grained, quartz, loose, ye	nded,		stick-up casing to ~: ft.
			MW-		SP	tine-q orang	grained, quartz, loose, ye ge with dark orange lamir rated below ~2.5 ft	ia (2-3 mm),		
			10			satur	aled delow ~2.5 ft			Bentonite/cement gr
		- 5								0-13 ft; 1/4-in bento
		⊢ -			SP	fine-g	Y SAND*, well sorted/rou grained, quartz, laminated	l, dense,		chips 13-14 ft.
		<u>⊢</u> –	$\left\{ \right\}$			light	gray to rust colored, pred gray below 7.5 ft, saturate	ominantly		
						🛝 (wea	thered bedrock)	متعمير		
						beco	DSTONE, fine-grained, qui mes medium-grained, tra	ce gravel		
		-10-				clast	s, increasingly well ceme difficult to auger) below 2	nted/hard		
						(very	unicult to augery below i			
										Sch. 40 PVC casil flush-threaded to 0.0
			drill		Ss					factory-slotted PV
		-15-	cuts		03					screen 16.3-21.3 ft silica sand 14-15 ft
								. •		silica sand pack 15-
										ft.
			1							
		20	]				-			
										* based on MW-1
	50 (1")	L _	1"			END	OF BORING - 21.5 feet			boring log
		Ļ _								
		⊨ _								
		25						:		
		⊢ -								
		┝ -	$\left  \right $							
		┝ -								
			1					1		
			1							
1	1	<u>⊢</u> –	- I		ı 1				1	1

Dril						Logged		. <u>.</u>	End Date	Depth to Wate
	AEC, Inc						e Mueller/STMI		10/7/98	
	ing Dep			-	Diam	eter	Surface Elevation	Drill Me		Northing
	15.0 Fee			8 Inc			443.8 Feet	HSA		3371.329
	I Depth				mete	r	TOC Elev.		Method	Easting 4451.486
	14.5 Fee	et		2-in	.D.		445.45 Feet	2-π.	split-spoon	4451.400
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Description	• •	Well Completion	Comments
$\overline{\mathbf{X}}$	1, 2, 3,					SAN	DY SILT, little fine-grail	ned gravel,		5-ft by 4-in square s
XX	4		63		ML	trace medi	e coal fragments, mediu ium brown, moist (topso	m stiff, pil)		stick-up casing to ~ ft.
X	1, 2, 6, 8		63	° • • • •	SM	SILT	Y SAND, medium- to c	parse-grained,		
$\bigotimes$	8	<b></b>	03	0.00	SW-	SILT	tz, loose, light brown, n Y SAND & GRAVEL, p	porly sorted,		
$\bigotimes$	3, 5, 25,	 	75	0.00	GW	dens	e, light brown, saturate	a		Bentonite/cement g 0-3 ft; 1/4-in bentor
$\bigotimes$	50					SAN	DSTONE	· · · · ·		chips 3-4 ft.
ĺ										
										Sch. 40 PVC casi
		10			Ss					flush-threaded to 0. factory-slotted P
										screen 4.5-14.5 ft;
								а.		silica sand pack 4-1
			1							
		—15—				END	OF BORING - 15 feet			<u> </u>
			1							
			1							
			]	ļ						
		L I							ļ	
		L _								
		25	ł							
			ļ							
			ł							
			-							
		⊢ –								
		30								
			-							

Prq	Ameren (	nako CIPS -	iling Hutse	<b>j - R</b> onvill	ecei e	<b>ved, Cle</b> 249	<b>rks' Office,</b> }-3	Ateginst N MVV-12	<b>1, 2008A</b>	5 8911 PECH 10/8/98	nibit B ^{age} 1
Dril	ler					Logged	by:			End Date	Depth to Water
	AEC, Inc	dianapo	olis, I	N		Steve	e Mueller/STM	11		10/8/98	~12 Feet
Bor	ing Dep	oth	Во	ring l	Diam	eter	Surface Ele	vation	Drill Metho	d	Northing
	17 Feet			8 Inc	hes		455.5 Fe	et	HSA		4053.583
We	I Depth		We	ll Dia	amete	ər	TOC Elev.		Sample Me	thod	Easting
•	16.9 Fee	et		2-in I	.D.		456.74 F	eet	2-ft. split	t-spoon	4637.976
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Descr	iption		Well Completion	Comments
$\boxtimes$	1, 1, 1, 1		63		ML Coal	- moist	DY SILT, little c t (topsoil) silty texture, s				5-ft by 4-in square ster stick-up casing to ~1.
$\bigotimes$	2, 3, 10, 100 Ash						Y SAND & GRA	VEL, poorly	sorted,		ft.
$\bigotimes$	1, 1, 2, 3	 5	63			medi SANI	um dense, light D, well sorted/r z, loose, light b	brown, mois	st (fill)		
×	2, 2, 4, 3		75		SP	·					
×	1, 2, 3, 2		50			coars	D, poorly sorted e-grained, sub z, trace fine gra	angular to si	ubround,		Bentonite/cement gro 0-3.5 ft; 1/4-in benton chips 3.5-5 ft.
×	1, 1, 1, 2	10 	75			brow	n, saturated be	low ~12 ft	.9		Chips 5.5-5 ft.
X	1, 2, 2, 3		75		sw						Sch. 40 PVC casing
×	2, 3, 3, 4	 	100								factory-slotted PVC screen 6.9-16.9 ft; # fine silica sand 5-6 ft;
X	10, 10, 35, 50		50		ML	SILT, END	, stiff, light brow OF BORING -	/n, moist 17 feet (bed	rock)		silica sand pack 6-17
XX											
		— <del>-</del>	1								
			1								
		 25	1		· ·						
		23	1								
			]								
			]								
			]								
		_									

	<b>jectitie</b> Ameren(					ed, Cler 249	<b>ks' Office,</b> )-3	ABorinst M MW-1		<b>S 819.rtl D1</b> 10/6/	<b>Bahi</b> '98	<b>bit B</b> age 1
Dril	ler			<u>.</u>		Logged	by:	L,		End Dat	te	Depth to Water
	AEC, Inc	dianapo	olis, I	N		Steve	e Mueller/STM	ЛI		10/6/	98	~7 Feet
Bor	ing Dep	oth	Во	ring	Diam	eter	Surface Ele	evation	Drill Metho	bd		Northing
	16.5 Fee	et		8 Inc	hes		456.4 Fe	eet	HSA			3961.759
We	ll Depth		We	II Dia	amete	ər	TOC Elev.		Sample Me	ethod		Easting
	16.0 Fee	et		2-in l	.D.		458.03 F	Feet	2-ft. spli	it-spoon		4241.200
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Descr	iption		Well Completion		Comments
$\bigotimes$	1, 2, 3, 5		25	0.00 0.00 0.00 0.00	SM	SILT	Y SAND, with g	gravel, loose il)	, dark	문 ···· 문 ···· 문 ···· 문		5-ft by 4-in square stee stick-up casing to ~2.0
$\propto$	Ŭ			°   o _		SAN	D*, well sorted/	rounded, fin	e- to			ft; concrete 0-3 ft.
×	1, 2, 2, 2, 2		50	2:0°: 2:0°:0 2:0;	SP SW-	media saturi * bas for ge	um-grained, qu ated below ~9 ed on drill cutti coprobe GP-4 (FY SAND & C d, fine- to coar grained subang	artz, light br ft. ings and geo GRAVEL, poo se-grained s	own, Nogic log Driy and,			Bentonite/cement grou 3-6.3 ft; 1/4-in bentonit chips 6.3-7 ft. Sch. 40 PVC casing
**		 			GW Ss	light i	DSTONE	ed				lush-threaded to 0.01- factory-slotted PVC screen 9-14 ft; #7 fine silica sand 7-8 ft; #5
						END	of Boring -	16.5 feet -				silica sand pack 8-16. ft.
		20										Unslotted casing/sediment sum 14-16 ft.

# Natural Resourd**Electronic**y**Filing - Received, Clerks' Office, August 11, 2008--ASOR-BOFFABUTOS INFORMATION** Standard Soil Boring Log Form - General Use Rev. 8-2000

	y/Proj EN Ene			ng – Hutsonville Powe	r Plant		Licens	e/Per	mit/Mon	itorin	g Numbe	er	Boring MW-11R		er		Page 1 of 1
Boring Boart		<b>i By</b> (F ear		me and name of crew			Date   10/03,		Starte	d	Date ( 10/03/		Comple	ted	Drilling HSA	Method	
Facilit	ty Well	No.	Un	que Well No.	Common Well Na:	ne	Final : Feet		Water I	Level	Surfac 440.9			C	Boreho 8.25 ind		eter -
	) Locat Plane	lon		3217.083 4654.729	Feet N Feet E		Lat Long	•			Local	Grid Lo	cation □ N □ S	(if ap		e)  ] E  ] W	
Count Crawf									Civil To Hutson		ity/ or	Village					
San	nple												Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	And Ge	ock Description cologic Origin For ch Major Unit			SOSU	Graphic Log	Well Diaoram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
MW-11R 0-2	18	23 46	2	sand with clay, dry		coars	e .										
MW-11R 2.5-4.5		34 66	4	grades to sand wit	h gravel, coarse			FILL									
MW-11R 5-7	20	34 45		5'-8' <u>SAND</u> , orang	e, poorly graded, co	oarse		SP									
MW-11R 7.5-9.5		23 43	8		RAVEL, brown, poor ine gravel/coarse s			SP	0 0 0 0 0 0								
MW-11R 10-12	18	2 2 3 2		coarse	orly graded, medium			SP	0.0			·					
MW-11R 12.5-14.1		23 33	- 12 - 12 - 14		GRAVEL, brown, po ine gravel/coarse s			SP	0 0 0 0 0								
MW-11R 15-17	3	50/3	16						0 0 0 0								
				EOB @ 16'Auger Re													
			20														
			22														
		tify th	at the	information on this fo	orm is true and co	rrect		best o	f my kn	owled	lge.		····				•
Signa		Ila	<u>J</u>	allen			Firm	Nati	ural Res	BOURCE	e Techn	ology,	Inc.				
			/														

## Natural Resourd Electromigy Filing - Received, Clerks' Office, August 11, 2008--AS509-BORMEDIOG INFORMATION Standard Soil Boring Log Form - General Use Rev. 8-2000

7

	EN Ene	<mark>ect Na</mark> Ingy Ge		ng – Hutsonville Powe	r Plant		Licens	e/Per	mit/Mon	itorin	g Numbi	Ħ	Boring MW-14	Numbe	er		
Boart	Drilled Longyo Radke	ear	irm na	me and name of crew	chief)		Date [ 10/03,		Starte	d	Date [ 10/03/		Comple		Drilling HSA	Method	
Facilit	y Well I	No.	Un	ique Well No.	Common Well Na	ame	Final S Feet		Water L	.evel	Surfac 440.9				Boreho B.25 inc		eter
	Locat	ion		2811.508	Feet N		Lat			<u> </u>	Local	Grid Lo	ocation	(if ap			
State	Plane			5325.781	Feet E		Long	•		. •			□ <i>N</i> □ <i>s</i>			□ <i>E</i> □ <i>N</i>	
County Crawfo									Civil To Hutson		ity/ or	Village					
Sam													Soil	Prope	rties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	And Ge	ock Description cologic Origin For ch Major Unit			nscs	Graphic Log	Weli Diaoram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
- 10				0'-7'6" <u>SILT,</u> brow non-plastic	in (10YR 4/3), mois	st,											
MW-14 2.5-4.5	18	23 23	4					ML									
MW-14 5-7	18	11 22	6 														
MW-14 7.5-9.5	18	1 2 1 2		7'6"-12'6" <u>SILT wi</u> low plasticity, mois	t SAND, brown (10	DYR 4/3)	•										
MW-14 10-12	24	11	10  12	yellowish brown (1 to medium	OYR 5/4), increase	plastici	ty	ML									
MW-14 2.5-14.5	5 18	11 12	14		LAY, brown (7.5YR je mottling, medium		1										
MW-14 15-17	22	11	16					CL									
MW-14	. 18	11	- 18						¥/4								
7.5-19.9		11	20	18'6"-26' <u>SAND wi</u>	<u>th SILT</u> , wet, non-p	plastic											
MW-14 20-22	18	11 11	20					SM									
MW-14 2.5-24.	5 ²⁰	22 33		23'6"-24' <u>SAND</u> se	eam, medium				(								
		rtify th	at the	information on this fe	orm is true and co	orrect t	o the l	L <u>SP</u> ¢e\$5Mic	j my kn	owled	lge.				1	_ <u></u>	L
Signal		/leu	,	Sollar	-		Firm	Nat	ural Res	ource	e Techn	ology,	Inc.				
	. 10		/	/			••••••										

g – Hutsonvil	le Po	wer P	lant	MW-14 cont.										Page 2 of 3
Sample										Soil	Prope	rties		
Number and Type Length Att. 6	Recovered (in)	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	nscs	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
20			=	24'-26' SAND with SILT, as above	SM	1.1							· · · · · · · · · · · · · · · · · · ·	
MW-14 18		12 23	- 26			111				1				
25-27		23		26'-39' <u>SAND with GRAVEL</u> , coarse sand, platy fine gravel, poorly graded		0.0								
MW-14 27.5-29.5 ¹⁸		23 34	28 		SP									
				gravel becomes rounded		0.0								
MW-14 20		33	= "			0 0 0					1			
30-32 20		45		4" <u>LEAN CLAY with Gravel</u> seam, gray(5Y 5/I), rounded, fine, 2-7% shell fragments	CL									
MW-14 10		33	Ξ			0.0								
32.5-345 ¹⁸		55	34		SP	/// 0 0 0 0 0 0 0								
			= 36			0 0 0 0 0 0 0 0								Advance
		:			SP	0 0 0			-					Hydropun discrete
			- 38 		_	0. 0. 0								water sampler
			40	EOB @ 39'										Drillers note:
			=											sand and gravel as
			- 42 -											above
			44											
			46			1								
			48											
			- - 50											-
			52 											
			54											
								ł						
			54 56 58 60											
			58											
							1							
			E 60								{			
											[			
			F	· · ·				ļ				1		

## Natural Resourc Electronic, Filing - Received, Clerks' Office, August 11, 2008--ASCIP-BORMADIDG INFORMATION

Standard Soil Boring Log

Form - General Use Rev. 8-2000

		ect Nam rgy Gen		g – Hutsonville Powe	r Plant		Licens	e/Per	mit/Mon	Itorin	g Numbe	ar (	Boring TW	Numbe	er		Page 1 of
Boring Boart		<b>I By</b> (Fi ear	_	e and name of crew			Date   10/02,		Starte	d	Date D 10/02/				Drilling I HSA	Method	
	y Well I		Unic	que Well No.	Common Well Na	me	Final : Feet		Water L	.evei	Surfac 437.81				Borehol 8.25 inc		eter
	Locat	ion		3717.203	Feet N		Lat				Local	Grid Lo			plicable		
State	Plane			5605.471	Feet E		Long	•					□ <i>N</i> □ <i>S</i>			□ <i>E</i> □ <i>N</i>	
County Crawf									Civil To Hutson		ity/ or '	Village					
Sam	•	Ī											Soi	l Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	And Ge	ock Description ologic Origin For ch Major Unit			nscs	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			2	0'-5'8" <u>SILT with 5</u> 2/2), grades from t throughout			OYR										
TW 2.5-4.5	20	2 2 3 3	-4					ML									
TW 5-7	18	21 24	6	5'8"-23' <u>LEAN CLA</u> plasticity, moist	Y. brown (10YR 4/	/3), mea	dium										
TW 7.5-9.5	16	11 12	-8	weak red (2.5Y 5/	3), trace orange m	nottling											
T₩ 10-12	20	11	10 														
T₩ 2.5-14.1	5 ¹⁸	11	-14	trace horizontal fr	acture, wet			CL									
TW 15-17	18	11	- 16	5-10% fine sand -													
TW 7.5-19.5	20	1/24	18 	very dark gray (2 white shell fragmer		od and											
TW 20-22	24	1/24	- 20 														
TW 2.5-24		1/24	-	23'-25'6" <u>SAND.</u> v				SP									
I here Signa	ture	rtify that	/ (	nformation on this for	orm is true and co	orrect	to the Firm	_	of my kn ural Res			ology,	Inc.				
				/			1										

ng – Huts	sonville	Power F	Plant	TW cont.										Page 2 of 2
San	nple						1			Soil	Proper	rties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RGD/ Comments
	10	1/24	ГГ I	medium, loose, wet	SP									
TW	18	22 22	L 26	25'6"-26' LEAN CLAY, as above //	CL	ŻŻŻ								
25-27		~ ~ ~		26'-27'6" <u>SAND with GRAVEL</u> , poorly graded, coarse sand, fine gravel, rounded	SP	000								
TW 27.5-29	5 ²⁰	35 910	28	27'6''-31' <u>SAND</u> , gray/black and white, poorly graded, medium to coarse, increased coarsness with depth	SP									
TW 30-32	20	46 99	32	31'-32'6" <u>SAND and GRAVEL</u> , coarse sand, poorly graded, fine gravel, rounded	SP	0 0 0 0		· · ·						
TW 32.5-34	5 12	t 1 1 1	1 1 1 34	32'6''-39'6'' <u>SAND</u> , gray, poorly graded, medium to coarse, 5-15% gravel										
TW	24	22	E 36		SP					1	1			
35-37		34	ĘĨ		J					1				
ТW 37.5-39	5 ²⁴	36 610	- 38 											
			<b>⊢</b> 40	EOB @ 39'6"		<u> </u>								
	ľ		F											
			E 42											
			44					1						
			E											
			E 46							ł				
			F											
			- 48			1								
1			E								ŀ			
			上 50		1							ļ		
			F					1			1	[		
			E 52					1						
			48 50 52 54							ļ				
			54											
			Ē											
			- 56 -											
			56											
			E											
			60											
			62											
	1		E							1				
	1	1	1			1			1	<u> </u>	1	1	1	



## SOIL BORING LOG

Facility/Project Name       License/Permit/Monitoring Number       Boring Number         Ameren Hutsonville Power Station Drilling       Intervention       Inter	N	RT											Page 1 of 1					
Boring Drilled By: Name of crew chief (first, last) and Firm       Date Drilling Started       Date Drilling Completed       Drilling Method         Steve       5/1/2004       5/1/2004       5/1/2004       hollow stem         Boart Longyear       Well ID No.       Common Well Name       Final Static Water Level       Surface Elevation       Borchole Diameter         Unique Well No.       Well ID No.       Common Well Name       Final Static Water Level       Surface Elevation       Borchole Diameter         Local Grid Origin       (estimated: □) or Boring Location □        Lat         Local Grid Location         State Plane       N, E S/C/N       Lat         Boroko6.72 Feet □ S 1176886.34 Feet □ W         Facility ID       County       State       Civil Town/City/ or Village       Hutsonville         Sample		•						License	License/Permit/Monitoring Number						Boring Number			
Steve Boart Longyear       5/1/2004       5/1/2004       hollow stem auger         Unique Well No.       Well ID No.       Common Well Name TW-115s       Final Static Water Level       Surface Elevation       Borcholc Diameter         Local Grid Origin       Ø (estimated: □) or Boring Location State Plane       ) or Boring Location N, E S/C/N       Lat        Local Grid Location         1/4 of       1/4 of Section , T       R       Long        \$88046.72 Feet □ \$1176886.34 Feet □ \$W\$         Facility ID       County       State       Civil Town/City/ or Village       Hutsonville																		
Boart Longyear       5/1/2004       5/1/2004       auger         Unique Well No.       Well ID No.       Common Well Name TW-115s       Final Static Water Level       Surface Elevation       Borehole Diameter         Local Grid Origin       Ø (estimated:) or Boring Location - State Plane          Local Grid Location         1/4 of       1/4 of Section       T        Long         State       State       State       State       State       W         Facility ID       County       State       Civil Town/City/ or Village       Hutsonville	-	-	d By:	Name o	f crew chief (fir	st, last)	) and Firm	Date Dr	illing S	Started		Da	te Drill	ing Co	mplete	d	-	
TW-115sFeet MSL438.4 Feet MSL8.3 inchesLocal Grid Origin(estimated: $\Box$ ) or Boring Location $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$	Boa	art Loi	ngyea	ır											2004		auger	
Local Grid Origin       Image: Construction in the section Unique	e Well N	<b>D</b> .		Well ID No.			1	1										
- State Plane N, E S/C/N Lat $         -$	<del></del>	0:10	• •		ļ													
1/4 of       1/4 of Section       TR       Long'      '898046.72       Feet []       S 1176886.34       Feet []       W         Facility ID       County       State       Civil Town/City/ or Village       Hutsonville         Sample				(est				La	it	0	•	n	Local	una Lo				
Facility ID     County     State     Civil Town/City/ or Village       Sample	~ State			1/		1,		· ·		• ,	,	'b	08046 -	72 Eee				
Sample     Sample	Facilit		01	17			IK		<u> </u>	Civil	Fown/C					117080		
		- <b>,</b>										•	C					
	San	nple			f					1		_						
	Number and Type		Blow Counts	Depth From Surface (feet)			nd Geologic Origin F Each Major Unit	Гог		Hand Pen (tsf)	Field Moisture Condition		Graphic Log	PID/FID (ppm)	Well Diagram		Comments/	
- 0'-36' Drilled without sampling-see log TW-115d for complete description				-														
TW-115d for complete description.					1 W-1150 IG	or çor	nplete description	n.	۰,									
				-								50						
														1.				
				- ·														
				- 10														
				- 1							1							
				[														
СН				-								СН						
														1				
				-												i i		
				-														
				- 20				<i>.</i> .										
				-														
												CL						
				-									60%	1		-		
				25									6.0	j				
				-								GP	600					
													60	4				
				- 30									0.0	]		1		
				-									Po S	]	目	1		
												SW						
				F								sw	P		日日	4		
										-			$  \cdots \rangle$	1				
END OF BORING AT 36, Well set at 35'					END OF B	ORIN	<u>IG AT 36</u> , Well s	et at 35'										
	<u> </u>	<u> </u>	<u> </u>			<u> </u>			.,	<u> </u>		I	ļ	Ļ	L	<u>L</u>	<u>.</u>	
I hereby certify that the information on this form is true and correct to the best of my knowledge.		•	ty that	the info	ormation on this	torm i				-								
	Signa	Pa	ent	Rich	h	Pai	1 11							3072			Tel: (262) 523-9000 Fax: (262) 523-9001	

Template: NRT BORING LOG - Project: 1375 LOGS.GPJ



## SOIL BORING LOG

N R T Page 1 of 5										of 5				
	y/Proje					License/Permit/Monitoring Number Boring Number								
				Power Station Dri								⁷ -115d		
	-	d By:	Name o	of crew chief (first, last	) and Firm	Date Drilling S	Started	•	Da	te Drill	ing Co	mpletec	1	Drilling Method
Stev Boa	rt Lor	ngyea	r	<i>,</i> .		4/29/2004								hsa, core
Unique	Well No	Э.		Well ID No.	Common Well Name	Final Static Water Level Surface Elevatio								
Leel	Grid Oı		52 (20)	imeted:	TW-115d						Feet MSL 8.3 inches			8.3 inches
State		ngin		timated: □) or Bo N,	ring Location	Lat	°	·	"·	Local		N N		🛛 E
State	1/4	of	1/	4 of Section ,	T R	Long	0	1		98052.5	56 Fee		11768	82.3 Feet 🗌 W
Facilit				County		State	Civil	Town/C		Villag				
							Huts	sonvil	le					
San	nple								10		_			
		ts	- <del>.</del>		Soil/Rock Description		tsf)	Field Moisture Condition	Symbol	<u>50</u>	PID/FID (ppm)	a a		
г. Эс	Length Att. & Recovered (in)	Blow Counts	fer [	A	and Geologic Origin Fo	r	Hand Pen (tsf)	on	S Sy	Graphic Log	D (F	Well Diagram		
Number and Type	gth / over	S S	oth F face		Each Major Unit		d pu	Id N	sci	ihqi	)/FI			RQD/ Comments/
Nur and	Len Rec	Blo	Depth From Surface (feet)				Hai	Col Fie	5	U ²	DII	š		Lab Test
1 SS	24 12			0'-3.5' <u>SANDY</u> (	CLAY, very dark gr (2), very fine sand,	eyish				VIIII				
22			-	brown (10 YR 3/	2), very fine sand,	moist		1						
M									CL					
$\frac{2}{\text{SS}}$	24		-				-							
ss	24		_											
Λ							-			<u> </u>				
3	24		-	tan, very fine sar	<u>SAND</u> mottled gr	ey-brown to								
3 SS	24		5	tan, very fine sai	id, 11015t				sc					
.  /			- 5											
, F	24		-				4							
ss V	24 24			6'-22' <u>FAT CLA</u> plastic, moist	<u>Y,</u> brown (10 YR 4	/3), soft,								
IX			-	plastic, moist										
5 SS	24 24													
V	V		10											
ss V	24 4										9			
35 1	4		-						СН					
1														
7 SS	24		-											
ss	24										1			
I)				wet at 13'										
8 t	24		-											
8 SS	24		1.5											
١٨			- 15					1						
Ľ			$\left  \right $							<i>[]]]</i>				,
l here	by certi	fy that	the info	ormation on this form i	s true and correct to the	e best of my kno	wledge	e.	•	•	-	·		
Signa		,			Firm									

SignatureFirmNatural Resource Technology, Inc.Tel: (262) 523-9000Paula Richardson23713 W. Paul Road, Unit D, Pewaukee, WI 53072Fax: (262) 523-9001Template: NRT BORING LOG - Project: 1375 LOGS.GPJ



•

-

N     R     T       Boring Number     TW-115@age 2 of 5											
San	nple						lo				
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth From Surface (feet)	Soil/Rock Description And Geologic Origin For Each Major Unit	Hand Pen (tsf)	Field Moisture Condition	U S C S Symbol	Graphic Log	PID/FID (ppm)	Well Diagram	RQD/ Comments/ Lab Test
⁹ ss	24 24			6'-22' <u>FAT CLAY</u> , brown (10 YR 4/3), soft, plastic, moist at 16' color change to olive grey (5Y 5/2)							
10 SS	24 24		-				сн				
11 SS	24 24		- 20 -	at 19.8' 2" sand seam, very fine sand 20'-22' trace very fine sand		-					
12 SS	24 24		-	22'-22.9' <u>SANDY CLAY</u> 22.9'-32' <u>POORLY GRADED GRAVEL WITH</u>			CL				
13 SS	24 0		- 25	<u>SAND</u> , olive grey (5Y 5/2), rounded, very fine to fine sand							
14 SS	24 8		-				GP				
15 SS	24 7		-								
16 SS	24 4		- 30								
17 SS	24 5		-	32'-33' <u>WELL GRADED SAND</u> , fine to coarse, trace rounded gravel 33'-36' <u>WELL GRADED SAND WITH</u>	-		sw				
18 SS	24 14		- 35	<u>GRAVEL</u> , very fine to coarse sand, fine to medium gravel, rounded			sw				
19 SS	24 8			36'-39' <u>POORLY GRADED SAND</u> very fine to medium, trace gravel, rounded			SP				
20 SS	24 14 -		-	39'-40' WELL GRADED SAND WITH	-		sw				
21 SS	24 11		- 40	GRAVEL, fine to coarse gravel and sand			GW				



N R T Boring Number TW-115dage 3 of 5										ge 3 of 5	
Sar	nple					0	loc		(r	-	
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth From Surface (feet)	Soil/Rock Description And Geologic Origin For Each Major Unit	Hand Pen (tsf)	Field Moisture Condition	U S C S Symbol	Graphic Log	PID/FID (ppm)	Well Diagram	RQD/ Comments/ Lab Test
22 SS	24 12			40'-42' WELL GRADED GRAVEL WITH SAND, fine to coarse sand, fine to coarse gravel, rounded 42'-58' WELL GRADED SAND, fine to coarse sand, trace gravel, rounded			GW				
23 SS	24 12		- 45	2" gravelly sand seam, fine to coarse gravel at	•••						
24 SS	24 13		-								
25 SS	24 14		-								
26 SS	24 13		- 50 -				sw				
27 SS	24 16										
28 SS	24 15		- 55								
29 SS	24 9		-								
30 SS	24		-	58'-70' <u>WELL GRADED GRAVEL WITH</u> <u>SAND</u> , fine to coarse sand, fine to coarse gravel, rounded							
31 SS	24 7		- 60 -								
32 SS	24 24		-				GW				
33 SS	24 12		- 65								
34 SS	24 4										
34 SS	24 4		-								



'N											
Number and Type	Number and Type Length Att. & Recovered (in) Blow Counts		Depth From Surface (feet)	- Soil/Rock Description And Geologic Origin For Each Major Unit		Field Moisture Condition	U S C S Symbol	Graphic Log	PID/FID (ppm)	Well Diagram	RQD/ Comments/ Lab Test
35 SS	24 0		-	58'-70' <u>WELL GRADED GRAVEL WITH</u> <u>SAND</u> , fine to coarse sand, fine to coarse gravel, rounded			GW				
36 SS	24 6		- 70 -	70'-74' WELL GRADED SAND fine to coarse							
37 SS	24 4						sw				
38 SS	24 0		- 75	74'-88' Logged from cuttings, <u>WELL GRADED</u> <u>GRAVEL WITH SAND</u> fine to coarse sand, fine to coarse gravel							Gravel starts coming up in cuttings.
39 SS	24 0		-								
40 SS	24 0										
41 SS	24 0		- 80				GW		t C		
42 SS	24 0		-								
43 SS	24 0		- 85								
44 SS	24 0		-  -								
45 SS	24 12		-	88'-90' <u>WELL GRADED SAND</u> , very fine to medium			sw		•		
46 CORL	180		- 90 - -	90'-105' <u>SHALE</u> , grey-blue, friable, moist			SHAL				



. . . . .

N	R T			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Boring Number TW-115dage 5 of 5						
Sam	•••••	s		Soil/Rock Description	lsf)	ure	nbol	-00	(uud	m	
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth From Surface (feet)	And Geologic Origin For Each Major Unit	Hand Pen (tsf)	Field Moisture Condition	U S C S Symbol	Graphic Log	PID/FID (ppm)	Well Diagram	RQD/ Comments/ Lab Test
			- 95 - 100 - 100				SHALI				



## SOIL BORING LOG

N	RT											Page		of 4
	y/Proje				<u>-</u> -	License/Perm	t/Moni	toring 1	Numbe	er	Boring	, Numbe	er	
				Power Station Dr			<u> </u>		15					-116
-	-	i By:	Name c	of crew chief (first, las	st) and Firm	Date Drilling	Started		Da	ate Drill	ing Co	mpleted		Drilling Method
Stev Boa	ve irt Lor	igvea	r	·		4/20	5/2004	1			4/28/2	2004		hsa, core
Unique	Well No	<u>ь) са</u> Э.		Well ID No.	Common Well Name	Final Static Wat			Surfac	e Elevati		ehole Diameter		
					TW-116						Feet M			8.3 inches
	Grid Oi	rigin	🛛 (est	timated: 🗌 ) or B N,	oring Location	Lat	0	1	"	Local	Grid Lo	ocation		57 -
State	1/4	of	1/	4 of Section ,	T R	Long	0	•	89'6	034.13	84 Fee	N ⊠ 1 □ S	117544	⊠ E 2.33 Feet □ W
Facilit		01		County		State	Civil	Fown/C		r Villag		<u> </u>		
							Huts	sonvil	le			<u></u>		
Sar	nple								<u>-</u>					
	i) &	ıts	r)		Soil/Rock Description		(tsf)	ture	S Symbol	80	udd	ram		
er /pe	Att.	Cour	Fror e (fe		And Geologic Origin Fo	r	Pen	Mois	SS	ic L	) QI	Diag	÷	RQD/
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth From Surface (feet)		Each Major Unit		Hand Pen (tsf)	Field Moisture Condition	sc	Graphic Log	PID/FID (ppm)	Well Diagram		Comments/
		B.	ฉี้ผื้			(10 )	=	ΈŬ			<u> </u>	3		Lab Test
ss	24 24				ry dark greyish brov 6", firm, slightly m									
ļ				572), 10011013 10	o , min, ongheij m	0150								
, F	24		-						ML					
2 SS	12							Ì						
Ņ										hin	2			
3	24		-	3.5'-4.8' <u>SILTY</u> brown, firm, sli	CLAY, very dark g	reyish			CL/M	ı				
3 SS	24		E				4							
			- 5	4.8'-16' <u>FAT CI</u> (10YR 4/4), sof	<u>_AY</u> , dark yellowish	n brown								
4	24		-	(1011( 4/4), 301	it, moist									
4 SS	24													
V														
5	24		-											
ss ss	24		_											
ľ														
6	24		- 10						Сн					
6 SS	24 24		1											
ľ	$\backslash$													
7	24								1				`	
ss	24								1					
/	V.									<b>///</b>				
8	24		-	at 14' very mois	st									
ss 8	24		- 15											
V	V													
L	1		<u> </u>		·····			ļ			1			
I here	by certi	fy that	t the inf	ormation on this form	is true and correct to the	e best of my kno	owledge	Э.						

Signature <	Firm	Natural Resource Technology, Inc.	Tel: (262) 523-9000
fann acharan	Paula Richardson	23713 W. Paul Road, Unit D, Pewaukee, WI	53072 Fax: (262) 523-9001
1			Template: NRT BORING LOG - Project: 1375 LOGS.GPJ



	N R T Boring Number TW-116 Page 2 of 4										
Number and Type	Length Att. & dd Recovered (in)	Blow Counts	Depth From Surface (feet)	Soil/Rock Description And Geologic Origin For Each Major Unit	Hand Pen (tsf)	Field Moisture Condition	U S C S Symbol	Graphic Log	PID/FID (ppm)	Well Diagram	RQD/ Comments/ Lab Test
9 SS	24 24			16'-20.5' <u>SANDY LEAN CLAY</u> , olive brown (2.5 Y 4/3), very fine sand, soft, wet			CL				
10 SS	24 24		- 20 - -	color change to dark grey (2.5 Y 4/1) 20.5'-26.5' <u>CLAYEY SAND</u> , dark grey, very fine sand, wet	-		SC				
11 SS	24 24		- - 25 -	26.5'-30' <u>CLAYEY GRAVEL</u> , fine gravel, few shell fragments, wet							
12 SS	24 18		- 30	30'-60' <u>WELL GRADED SAND</u> olive brown (2.5 Y 4/4), fine to coarse, subangular to rounded, wet			GC				
ss	24 12		- 35 -		•		SW				
ss	24 0		- - 40 -			-					



•

N	N     R     T     Boring Number     TW-116 Page     3 of     4       Sample     Image: Control of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s											
	Length Att. & d Recovered (in) al	Blow Counts	Depth From Surface (fect)	Soil/Rock Description And Geologic Origin For Each Major Unit	Hand Pen (tsf)	Field Moisture Condition	U S C S Symbol	Graphic Log	PID/FID (ppm)	Well Diagram	RQD/ Comments/ Lab Test	
15 SS	24 10		- 45	30'-60' <u>WELL GRADED SAND</u> olive brown (2.5 Y 4/4), fine to coarse, subangular to rounded, wet								
16 SS	24 12		- - 50 - -				SW					
IT SS	24 6		_ 55									
18 SS	24 2		- 60	friable			SHAL					
19 CORL	180		- 65									

-



N	R T		cnno	nogy	Bori	ng Nu	ımber	Т	<b>W-1</b> :	16 Pa	ge 4 of 4
Number and Type	Length Att. & dd Recovered (in)	Blow Counts	Depth From Surface (feet)	Soil/Rock Description And Geologic Origin For Each Major Unit	Hand Pen (tsf)	Field Moisture Condition	U S C S Symbol	Graphic Log	PID/FID (ppm)	Well Diagram	RQD/ Comments/ Lab Test
			- 70 - 70 - 75 - 75	60'-79' <u>SHALE</u> , grey-blue, slightly moist, friable			COAL				



٦

٤.

# SOIL BORING LOG

N	RT														Pag	ge l	of 4
Facility	-							L	icense/Permi	t/Moni	loring 1	Numbe	r	Boring	Numb		······
				Power St								1-					V-117
-		By:	Name o	of crew chie	f (first, last	) and Firm		D	ate Drilling S	Started		Da	te Drill	ing Co	mplete	d	Drilling Method
Stev Boa	^{ve} rt Lor	igvea	ır						4/28	3/2004	1			4/29/2	2004		hollow stem auger
	Well No			Well ID No		1	Well Name	Fi	inal Static Wat		-		e Elevati			Bo	rehole Diameter
							V-117		Feet	MSL		4	135.0				8.3 inches
Local ( State ]		igin	🛛 (es	timated:		ring Locati E S /	ion 🗌 C/N		Lat	0	1	"	Local (	jrid Lo			<b>S</b> -
State	Plane	of	1.	/4 of Section	,	E S/ T R			Long		,	'8	95267.7	78 Fee		)   11790:	⊠ E 53.33 Feet □ W
Facilit				Cou				Sta				City/ or	Village				
			,							Huts	onvil	le				τ,	
San	ple											<u>0</u>		(			
	જ્ર (ij	nts	(ja				Description			Hand Pen (tsf)	Field Moisture Condition	S Symbol	go	PID/FID (ppm)	Well Diagram		
er /pe	Att. sred	Cou	Fro e (fi		A	-	gic Origin Fo	or		Pen	Hoi	SS	ic L	ID (	Diag	ŀ	RQD/
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth From Surface (feet)			Each M	ajor Unit			and	eld   ondi	sc	Graphic Log	D/F	/ell		Comments/
		В	ÑĎ						1	<u> </u>	ШŪ	D		Ы	\$		Lab Test
ss V	24 12			0'-6' SA (2.5 V 3	$\frac{NDY LE}{(3)}$ very	AN CLA	<u>\Y</u> , dark o d, slightly	liv 7 m	e brown								
ΙÅ				(2.5 1 5	<i>, , , , , , , , , , , , , , , , , , , </i>	mie sam	d, singhtiy	, 111	0131		í .						
(A	24		-														
$\frac{2}{\text{ss}}$	24 24																
IX			-									CL					
_ μ			Ļ														
$\frac{3}{\text{ss}}$	24 0																
X			- 5														
$\square$												L					
$\frac{4}{\text{ss}}$	24 24			6'-7.8' <u>F</u>	AT CLA	<u>Y</u> , dark o	olive brow	vn,	high								
			$\vdash$	toughne	ss and pl	asticity,	moist			ľ	-	СН					
$\square$				7 91 751	DOODLY				loul	ł							
$\frac{5}{\text{ss}}$	24 10			vellowi	sh brown	(10 YR	ED SAN	பு 0 7 fu	ne, wet								
X			-	J		(	,,		, ··								
$\square$			- 10	:													
ss V	24 12																
X			-														
$\wedge$			_									SP					
			F														
			Γ														
7 🔽	24		- 15														
$\frac{7}{\text{ss}}$	10																
		6, the	the inf	l	this fame :	o truc on d	aamaat ta th	. <b>L</b> .	ot of my kee		<u> </u>	L				1	· · ·
Signat	-		uie mi	ormation on	uns iorm i	s use and	1		est of my kno			~ T					T 1 (2/2) 502 0000
$\underline{\mathcal{Z}}$		R	reh.	mat-	- Pa	ula Richarc	1 110		al Resourc W. Paul Road					3072			Tel: (262) 523-9000 Fax: (262) 523-9001

Template: NRT BORING LOG - Project: 1375 LOGS.GPJ



•

.

NI	R T		CHHO		Bori	ng Nu	mber	T	<b>W-1</b>	<b>17</b> Pag	e 2 of 4
Number and Type	Recovered (in) al	Blow Counts	Depth From Surface (feet)	Soil/Rock Description And Geologic Origin For Each Major Unit	Hand Pen (tsf)	Field Moisture Condition	U S C S Symbol	Graphic Log	PID/FID (ppm)	Well Diagram	RQD/ Comments/ Lab Test
X	24 0		- 20	7.8'-25' <u>POORLY GRADED SAND</u> dark yellowish brown (10 YR 4/4), very fine, wet trace shell fragments at 16'			· SP				
9 \$\$	24 8		- 25	25'-26' WELL GRADED SAND fine to medium, coarsens downward 26'-35' WELL GRADED GRAVEL, trace sand and shell fragments, rounded	-		sw				
	24 4		- - 30	grey clay in shoe of split spoon			GW				
	24 6		- 35	35'-60' WELL GRADED SAND fine to coarse	_						
ss	24 5		- - 40				sw				



...

NR	r	<u> </u>	nogy	Bori	ng Nu	mber	T	<u> W-1</u>	17 Pag	te 3 of 4
Number and Type Length Att. & Recovered (in)	Blow Counts	Depth From Surface (feet)	Soil/Rock Description And Geologic Origin For Each Major Unit	Hand Pen (tsf)	Field Moisture Condition	U S C S Symbol	Graphic Log	PID/FID (ppm)	Well Diagram	RQD/ Comments/ Lab Test
13 SS 24 14		- - - 45 -	35'-60' <u>WELL GRADED SAND</u> fine to coarse							
14 SS 24 17		- 50				SW.				
15 SS 24 0		- 55 - - - 60								
16 SS 24 0		- 65	60'-75' Logged from drill cuttings <u>POORLY</u> <u>GRADED GRAVEL</u> , coarse, rounded			GP				Went to larger sample interval due to drilling conditions.



e

•

N R	T		<b>CIIII</b> 0	~~ <b>5</b> ,	Bori	ng Nu	mber	T	W-1	17 Page	e 4 of 4
Sampl	le						0		~		
Number and Type Length Att. &	Recovered (in)	Blow Counts	Depth From Surface (feet)	Soil/Rock Description And Geologic Origin For Each Major Unit	Hand Pen (tsf)	Field Moisture Condition	U S C S Symbol	Graphic Log	PID/FID (ppm)	Well Diagram	RQD/ Comments/ Lab Test
17 SS	24 0		- 70 - 70 - 75 - 80 - 85 - 85	60'-75' Logged from drill cuttings POORLY GRADED GRAVEL, coarse, rounded			GP				No samples attempted after 77 feet due to drilling conditions.
18 X SS	6 2		- 90	90'-90.5' <u>SHALE</u> END OF BORING AT 90.5' Well set at 20'			\$HAL				
ł	1		1	1	1	ļ	۲.	ł	t	1	

...



 $e^{2}$ 

# SOIL BORING LOG

、

N	RT			0.								Pag	ge 1 of 2
	ıy/Proje			WP-in-Inf-T-1		License/Permi	it/Moni	toring	Numbe	r	Boring	g Numb	
Am	eren H	lutso	nville	Power Station Dr	illing								TW-118
		d By:	Name o	of crew chief (first, las	t) and Firm	Date Drilling	Started		Da	te Drill	ing Co	mplete	
Ste Box	ve art Lor	igvea	r			5/4	/2004	Ļ			5/4/2	004	hollow stem auger
Unique	e Well No	5. D.		Well ID No.	Common Well Name	Final Static Wat			Surface	e Elevati			Borehole Diameter
					TW-118	Feet	MSL		4	437.0			8.3 inches
	Grid O	rigin	🛛 (esi		F S (C (N)	Lat	o	•	,,	Local (	Grid Lo		
State	Plane 1/4	of	1.	N,	E S/C/N T R	Long		,	'b	00080	26 Fee		N 🛛 E 51177978.73 Feet 🗍 W
Facili		01	17	County	<u> </u>	State	Civil	Town/0		Village			
							1	sonvil		-		_	
Sai	nple								_				
	k (ii	ts	- 🕫		Soil/Rock Description		(lsf)	Field Moisture Condition	C S Symbol	60	PID/FID (ppm)	an	
гg	-	Blow Counts	Depth From Surface (fect)		And Geologic Origin F	or	Hand Pen (tsf)	loist	S Sy	Graphic Log	D (p	Well Diagram	DOD
Number and Type	Length Att. Recovered (	N N	pth I		Each Major Unit		d pu	ld N ld iti	sc	aphi	D/FI		RQD/ Comments/
Nu	Ler Rec	Bid	De				На	ů Eie	5	ΰ	lld	Å	Lab Test
1 SS	24 24			0'-3' <u>SILT</u> , brow	m (7.5 YR 4/2)						1		
			$\left  \right $										
L	\												
2 SS	24 24								ML				
			-	21 51 domb moddie	h arow $(5 \text{ VD } 1/2)$	traga and							
V	Y			5-5 dark reduis	h grey (5 YR 4/2),	trace sand							
3 SS	24 24			wet at 4'									
33	() 27		- 5	S' A'WELL CD	ADED SAND Hah	t raddiah	-			┟╷╷╷	•		
ľ	N .			brown (5 YR 6/	ADED SAND ligh 3), medium to fine	reduisii			SW				
4 SS	24 24			6'-7.5' <u>SILT</u> , bro	own (7.5 YR 4/2)		7				]		
33	(  24		-						ML				
ľ	$\mathbf{N}$			7.5'-10' POORL	Y GRADED SAN	D WITH	1						
5 SS	24 18			SILT							1		
33			-						SP-SN	1			
	V										ł		
6 SS	24		10		Y GRADED SANI	brown (7.5	1						
- 55	24		-	YR 5/2), mediu	m grained						]		
V	V					-							
7	24		- '								•		
SS	24		-						SP		]		
V				. ·							1		
8 SS	24		-								•		
SS	16		- 15						1				
V	V												
	-		<u> </u>					<u> </u>		1	1		1
	-	fy that	the inf	ormation on this form	is true and correct to th	·················	-						
Signa	and	. Œ	5.7	E D		tural Resourc					2072		Tel: (262) 523-9000
/	and	n. 74	-cu	right Pi	aula Richardson 237	13 W. Paul Road	a, Unit	D, Pev	vaukee	<u>, wi 5</u> .	5072		Fax: (262) 523-9001

Template: NRT BORING LOG - Project: 1375 LOGS.GPJ



N I	R T		CHIC	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Bori	ng Nu	imber	T	<b>W-1</b>	<b>8</b> Pa	ge 2 of 2
Samb and Type	Lengin Att. & al Recovered (in) al	Blow Counts	Depth From Surface (feet)	Soil/Rock Description And Geologic Origin For Each Major Unit	Hand Pen (tsf)	Field Moisture Condition	U S C S Symbol	Graphic Log	PID/FID (ppm)	Well Diagram	RQD/ Comments/ Lab Test
9 🔽	24 12		- 20	10'-26' <u>POORLY GRADED SAND</u> brown (7.5 YR 5/2), medium grained			SP				
	24 12		- 25	@ 22' coarse sand with few gravel <u>END OF BORING AT 26</u> , Well set at 25'							
				· · · · · · · · · · · · · · · · · · ·							



# SOIL BORING LOG

	ĸı											Pa		of 5	
	y/Proje					License/Permit	/Moni	toring 1	Numbe	r	Boring	g Numl			
				Power Station Dr							<u>C</u> .			W-119	<u></u>
		d By:	Name o	of crew chief (first, last	l) and Firm	Date Drilling S	started		Da	te Drill	ing Co	mplete	d	Drilling Method	1
	rt Lor		ır				/2004				5/3/2	.004		hsa, core	
Unique	Well No	0.		Well ID No.	Common Well Name TW-119	Final Static Wate Feet 1				Elevati 35.4		USI	В	8.3 inches	
Local	Grid Oı	rigin	🛛 (es	timated: 🗌 ) or Bo	pring Location					Local (				0.5 menes	
State		C		, N,	E S/C/N	Lat	°	<u> </u>				<b>א</b>		× E	
	1/4	of	1,	/4 of Section ,	<u>TR</u>	Long	<u> </u>	<u> </u>						339.05 Feet 🗌 W	'
Facilit	y ID			County		State		Town/C	•	Village	9				
			- 1				Huts	sonvil			[	<u> </u>	r		
San	nple					•		0			Ē				
	Length Att. & Recovered (in)	Ints	Depth From Surface (feet)		Soil/Rock Description		Hand Pen (tsf)	Field Moisture Condition	C S Symbol	go	PID/FID (ppm)	Well Diagram			
Number and Type	h Att ered	Blow Counts	n Fro ce (f	F	And Geologic Origin F Each Major Unit	01	Pen	Moi	SS	Graphic Log	<u>q</u>	Dia		RQD/	
luml T bu	engt ecov	low	ept} urfa		Lacii Major Olin		and	ield ond	S	irapl		Vell		Comments/	
	∞ 24		°⊡ N	O' A' SH TV CL	V	wich harowa	ш —	<u> </u>			<u> </u>			Lab Test	_
ss	18			(10  YR  3/2),  firm	<u>AY</u> , very dark grey n, moist	ISH DIOWII									
IA I			[	<b>x</b>	,										
~ F	24		-	1	1.1	(0.5.37.4/0)			¢l/мі						
$\frac{2}{\text{ss}}$	20			color change to	dark greyish brow	m (2.5 ¥ 4/2)			1						
۱. ۱													-		
[	24		-				ł								
$\frac{3}{\text{ss}}$	24 24			4'-11.7' <u>FAT CL</u> moist	AY, dark greyish	brown, soft,									
I.			- 5	moist							f.				
. [			-												
4 SS	24 21			at 6' very moist											
ľ			-												
Ľ									СН						
5 SS	24 24														
X			-	at 9' wet											
Ľ			_ 10												
6 SS	24 24		10												
			-				-								
ľ					V CD ADED CA		ł								
7 SS	24 16				<u>Y GRADED SA</u> d grey brown, ver										
33 1			-	at 12 color chan	ge to dark yellow	ish brown (10									
1				YR 4/4)					SP						·
<u> </u>	] [		ſ							[·····	]				
			- 15								1				
												目			
<u> </u>			F				L	<u> </u>	I	[	1		<u> </u>		_
	•	ty that	the inf	ormation on this form	15:				-						<u> </u>
Signa	ure	Ŕ	dra	A Pa		atural Resource					3072			Tel: (262) 523-90 Fax: (262) 523-90	

Template: NRT BORING LOG - Project: 1375 LOGS.GPJ



	ogy	Bori	ng Nu	mber	Т	<b>W-1</b> 1	<b>9</b> Page	2 of 5
Number and Type Length Att. & Recovered (in) Blow Counts Depth From Surface (fect)	Soil/Rock Description And Geologic Origin For Each Major Unit	Hand Pen (tsf)	Field Moisture Condition	U S C S Symbol	Graphic Log	PID/FID (ppm)	Well Diagram	RQD/ Comments/ Lab Test
$ \begin{array}{c} 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 $	11.7'-41'POORLY GRADED SAND mottled orange brown and grey brown, very fine, wet         very fine to medium sand         very fine to fine sand	H	EO	SP		<u>d</u>		Lab Tesi



'n

## Natural Resourcc Technology

N R	R T Boring Number TW-119 Page 3 of 5 mple											
Number and Type Length Att. &	in)	Blow Counts	Depth From Surface (fect)	Soil/Rock Description And Geologic Origin For Each Major Unit	Hand Pen (tsf)	Field Moisture Condition	U S C S Symbol	Graphic Log	PID/FID (ppm)	Well Diagram	RQD/ Comments/ Lab Test	
$\begin{bmatrix} 13\\ SS \end{bmatrix} \begin{bmatrix} 2\\ 1 \end{bmatrix}$	24		- - 45	41'-45' <u>WELL GRADED SAND</u> very fine to coarse, trace rounded gravel 45'-60' <u>POORLY GRADED SAND</u> very fine to medium			SW					
14 2 SS 1	24		- - - 50									
Ň			- 55				SP					
15 SS	24 0											
16 SS	24 0		- 60 - -	60'-80' Logged by drill cuttings <u>,WELL</u> <u>GRADED SAND WITH GRAVEL</u> to <u>WELL</u> <u>GRADED GRAVEL WITH SAND</u>	-		sw				Gravel starts coming up in cuttings	
	24 0		- 65									



# R Т N TW-119 Page 4 of 5 Boring Number Sample U S C S Symbol Field Moisture Condition PID/FID (ppm) Soil/Rock Description Hand Pen (tsf) Well Diagram Length Att. & Recovered (in) Depth From Surface (feet) Blow Counts Graphic Log And Geologic Origin For Number and Type RQD/ Each Major Unit Comments/ Lab Test 5 D 60'-80' Logged by drill cuttings,<u>WELL</u> <u>GRADED SAND WITH GRAVEL</u> to <u>WELL</u> <u>GRADED GRAVEL WITH SAND</u> 70 18 SS 24 0 SW 75 19 SS 24 0 80 20 COR 84 24 80'-100' SHALE, grey to black, laminated, poorly lithified, no circulation of drilling water 85 21 CORI 72 30 90



Natural Resource Technology

N	RT		chno	logy	Bori	ng Nu	mber	T\	<b>V-1</b> 1	<b>9</b> Pag	ge 5 of 5
San and Type	Length Att. & dd Recovered (in)	Blow Counts	Depth From Surface (fect)	Soil/Rock Description And Geologic Origin For Each Major Unit	Hand Pen (tsf)	Field Moisture Condition	U S C S Symbol	Graphic Log	PID/FID (ppm)	Well Diagram	RQD/ Comments/ Lab Test
22 CORI	84 54		- - - - - - - - - - - - - - - - - - -	80'-100' <u>SHALE</u> , grey to black, laminated, poorly lithified, no circulation of drilling water <u>END OF BORING AT 100</u> ' Well set at 20'							



.

# SOIL BORING LOG

1	K I											- Page	
	y/Proje					License/Permi	t/Moni	toring	Numbe	r	Boring	g Numbe	
				Power Station Dr									TW-120
-	-	d By:	Name	of crew chief (first, las	t) and Firm	Date Drilling	Started	j	Da	ite Drill	ing Co	mpleted	e e
Stev						5/2	12004				5/4/2	004	hollow stem
Unique	rt Loi	igyez	11	Well ID No.	Common Well Name		5/3/2004 Final Static Water Level Surface Elevat			Elevati		.004	Borehole Diameter
					TW-120	1	MSL	1	1	146.8		MSL	8.3 inches
Local	Grid O	rigin	🛛 (es	timated: 🔲 ) or Bo	pring Location	1 2000	0		<u> </u>	Local C			
State	Plane			N,	E S/C/N	Lat,			· · · ·			🛛 N	🛛 E
	1/4	of	1	/4 of Section ,	TR	Long	<u> </u>	<u> </u>				t 🗌 S I	180157.14 Feet 🗌 W
Facilit	y ID			County		State			-	Village	2		
			1				Huts	onvil	le	1		i – T	
San	nple								-		-		
	& in)	nts	r (te		Soil/Rock Description		Hand Pen (tsf)	Field Moisture Condition	S Symbol	gc	PID/FID (ppm)	Well Diagram	
er 'pe	Length Att. & Recovered (in)	Blow Counts	Depth From Surface (feet)	1	And Geologic Origin Fo	or	en	Aois	s s	Graphic Log	D (	Diag	RQD/
Number and Type	ngth cove	) wo	pth		Each Major Unit		l pu	ld N hdit	SC	aphi	D/FI		Comments/
ane		Ble	De				Ha	C Eie	D		lld	Ň	Lab Test
	24 17			<u>0'-0.5' TOPSOIL</u>	ź					<u></u>			
			-	0.5'-14' <u>POORL</u>	Y GRADED SAN	D brownish							
M				yellow (10 YR 6	5/6), medium								
$\frac{2}{\text{ss}}$	24 15		F										
ss	15												
IV													
3	24		F										
$\frac{3}{SS}$	15												
Á			- 5										
Ľ			-										
			F						SP				
	· ·												
4	24		Ē.										
ss	12		F										
/\													
L	1		- 10	color change to	reddish yellow (7.5	VD 6/6)							
				moist	reduisit yenow (7.2	$\beta$ IK $0/0$ ,							
			F	· · · ·									
			L										
									ł .				
			╞										
5 SS	24		F	14'-36' POORLY	Y GRADED SANE	O WITH	1			60			
ss	10		- 15	<u>GRAVEL</u> , reddi	sh yellow, medium	n sand,			SP	0			
IV.			15	rounded gravel,	moist					0 0			
Ľ	1		╞							$\cap$			

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature	01		Natural Resource Technology	, Inc.	Tel: (262) 523-9000
Faren	probat	Paula Richardson	23713 W. Paul Road, Unit D, Pewau	kee, WI 53072	Fax: (262) 523-9001
				Template: NRT BORIN	GLOG - Project: 1375 LOGS.GPJ



## Natural Resource Technology

	R T			llogy	Bori	ng Nu	mber	T	W-12	20 Pa	ge 2 of 2
Number and Type	Length Att. & dd Recovered (in)	Blow Counts	Depth From Surface (feet)	Soil/Rock Description And Geologic Origin For Each Major Unit	Hand Pen (tsf)	Field Moisture Condition	U S C S Symbol	Graphic Log	PID/FID (ppm)	Well Diagram	RQD/ Comments/ Lab Test
				14'-36' <u>POORLY GRADED SAND WITH</u> <u>GRAVEL</u> , reddish yellow, medium sand, rounded gravel, moist							
ss	24 24		- 20	wet at 19'							
ss	24 24		- 25				SP				
ss	24 24		- - 30 -								
9 SS	24 24		- 35	34'-36' coarse sand END OF BORING AT 36' Well set at 35'							

~ P

# **APPENDIX B**

# **ALTERNATIVE COST SUMMARY SHEETS**

~ ~ ~ ~

• ;

Leachate Management and Final Cover Alternatives Ro				NRT PROJECT NO .: 1	375/6.1
Hutsonville Ash Management Facility - Unlined Ash In	mpoundment (I	Pond D) (	Closure		HKD BY: BRH
Ameren Energy Generating - Hutsonville, Illinois				DATE: 6/27/05	EJT (5/19/05 SUB
CONSULTING CAPITAL COSTS					TOTAL
Consulting Hydrogeologic Evaluation, Engineering Design, Syst Geotechnical Evaluation	em Installation	Oversight	nt, Final Syst	em Documentation	\$500,000
SUBTOTAL, CONSTRUCTION CAPITAL COSTS 30% Estimating Contingency					\$500,000 \$150,000
TOTAL, CONSULTING CAPITAL COSTS					\$650,000
CONSTRUCTION CAPITAL COSTS	QUANTITY	UNIT	UNIT COST	ITEM COST	SUB TOTAI
Construction					\$3,602,622
Mob./Demob.	1	LS	\$324,108	\$324,108	
Site Facilities & Maintenance (Erosion Controls)		LS	\$8,000	\$8,000	
Regrade Stockpiled Ash to Fill Depressions	50,500	CY	\$1.97	\$99,485	
Excavate Ash From Pond A for Pozzolanic Mix	100,480	CY	\$1.81	\$181,869	
Blend Ash w/ Reagents to Form Pozzolanic Mix	100,480	CY	\$1.86	\$186,893	
Place 3.0' Pozzolanic Ash Final Cover	100,480	CY	\$1.61	\$161,773	
Place Fly Ash From Pond A to Construct Grade	120,700	CY	\$3.42	\$412,794	
Place Rooting Zone to Compete Protective Layer	100,480	CY	\$9.31	\$935,469	
Additional Construction Items Identified by VFL					
Dewatering	1	LS	\$23,951	\$23,951	
Reagent Cost - Cement ⁸	12,824	TON	\$95.00	\$1,218,280	
Relocate Sluice Pipes and Supports	1	LS	\$50,000	\$50,000	
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$3,602,622
30% Estimating Contingency					\$1,080,800
TOTAL, CONSTRUCTION CAPITAL COSTS					\$4,683,422
TOTAL CAPITAL COSTS (Without Additional Ex	cavation in Po	ond A)			\$5,333,000
ASSUMPTIONS					
1. Total area of Pond D for final cover estimated at 966,000 SF, a					
2. Pozzolanic fly ash cover consists of: 3 foot Pozzolanic Fly ash					
3. Mix Design No. 1 - 100% Fly Ash w/ 10% cement reagent (dry			chnology Corpo	oration Tables.	
<ol> <li>All estimated final cover alternative material quantities are provided for the standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard stand Standard standard st Standard standard stand Standard standard stand Standar</li></ol>					
<ol> <li>Earthwork quantities based on VFL Technology Corp. Estimate - Earthwork estimates provided by NRT in the original estimate</li> </ol>		VEI's East	hwork Ectimat	ar	
<ol> <li>Estimate 100,480 yd³ of ash excavated from Pond A for pozzol</li> </ol>		VILS Lan	IIWOIK EStimat	cs.	
<ol> <li>Costs for the pozzolanic fly ash cover construction based on est</li> </ol>		v VFL Tec	hnology Corpo	ration in their letter dated !	May 9, 2002
Several line items from Pozzolanic Fly Ash Final Cover (Initial E.					, 2002.
Line Items: Site Vegetation Clearing (22 acres), Documentation	on Surveying, and	Revegetatio	on (mulch, seed	, fertilizer) are included in	Mob./Demob.
Line Item: Load and Haul to Processing Plant is included in E					
Line Items: Install Beneficial Reuse Ash for Protective Layer, Pozzolanic Ash Final Cover and Install General Fill to Competer		sis/Geotech	nical Testing, a	and Site Drainage are inclu	ided in Install 3.0'
Construction Capital Cost not included in VFL Estimate.					
8. Revised reagent cost provided by VFL Technology Corporation	n in Table #3 dated	July 2, 20	02 - 3 ft. cover	- 12,824 tons of cement (A	Appendix C-2).
9. Above is a preliminary estimate and may be revised if selected	for final design - I	the consulti	ng costs and es	timating contingency provi	ided in this
spreadsheet are conservative - actual costs may be lower.					

10. For ease of comparison to initial pozzolanic fly ash final cover estimate, the same consulting costs, engineering design costs,

and estimating contingency have been used.

FINAL COVER ALTERNATIVE: Pozzolanic Fly Leachate Management and Final Cover Alternatives R	eport			NRT PROJECT NO.: 13	
Hutsonville Ash Management Facility - Unlined Ash I Ameren Energy Generating - Hutsonville, Illinois	mpoundment (	Pond D) (	Closure	BY: CAR CH DATE: 6/27/05	IKD BY: BRH EJT (5/19/05
And the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set				DATE: 0/2/105	SUB
CONSULTING CAPITAL COSTS					TOTAL
Consulting Hydrogeologic Evaluation, Engineering Design, Sys Geotechnical Evaluation	tem Installatior	n Oversigh	nt, Final Syst	tem Documentation	\$500,000
SUBTOTAL, CONSTRUCTION CAPITAL COSTS 30% Estimating Contingency	/				\$500,000 \$150,000
TOTAL, CONSULTING CAPITAL COSTS					\$650,000
	QUANTITY	UNIT	UNIT	ITEM	eun
CONSTRUCTION CAPITAL COSTS	QUANTIT	UNIT	COST	ITEM COST	SUB TOTAL
Construction					\$2,987,117
Mob./Demob.	1	LS	\$324,108	\$324,108	
Site Facilities & Maintenance (Erosion Controls)	1	LS	\$8,000	\$8,000	
Regrade Stockpiled Ash to Fill Depressions	50,500	CY	\$1.97	\$99,485	
Excavate Ash From Pond A for Pozzolanic Mix	100,480	CY	\$1.81	\$181,869	
Blend Ash w/ Reagents to Form Pozzolanic Mix	100,480	CY	\$1.86	\$186,893	
Place 3.0' Pozzolanic Ash Final Cover	100,480	CY	\$1.61	\$161,773	
Place Fly Ash From Pond A to Construct Grade	120,700	CY	\$3.42	\$412,794	
Place Rooting Zone to Compete Protective Layer	100,480	CY	\$9.31	\$935,469	
Additional Construction Items Identified by VFL					
Dewatering	1	LS	\$23,951	\$23,951	
Reagent Cost - Cement ⁸	6,345	TON	\$95.00	\$602,775	
Relocate Sluice Pipes and Supports	1	LS	\$50,000	\$50,000	
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$2,987,117
30% Estimating Contingency	1				\$896,100
TOTAL, CONSTRUCTION CAPITAL COSTS					\$3,883,217
FOTAL CAPITAL COSTS (Without Additional Ex	xcavation in Po	ond A)			\$4,533,000
ASSUMPTIONS					
1. Total area of Pond D for final cover estimated at 966,000 SF, a	approximately 22 a	acres.			
2. Pozzolanic fly ash cover consists of: 3 foot Pozzolanic Fly ash					
Mix Design No. 2 - 100% Fly Ash w/ 5% cement reagent (dry			anology Corpor	ation Tables.	
<ol> <li>All estimated final cover alternative material quantities are pro</li> <li>Earthwork quantities based on VFL Technology Corp. Estimate</li> </ol>		4			
<ul> <li>Earthwork estimates provided by NRT in the original estimate</li> </ul>		VEL's Eart	hwork Estimat	es	
Estimate 100,480 yd ³ of ash excavated from Pond A for pozzo					
. Costs for the pozzolanic fly ash cover construction based on es		y VFL Tech	hnology Corpo	ration in their letter dated N	May 9, 2002.
everal line items from Pozzolanic Fly Ash Final Cover (Initial E	stimate) are incor	porated in th	his estimate as	described below:	
Line Items: Site Vegetation Clearing (22 acres), Documentation					Mob./Demob.
Line Item: Load and Haul to Processing Plant is included in E					
Line Items: Install Beneficial Reuse Ash for Protective Layer, Pozzolanic Ash Final Cover and Install General Fill to Competer		sis/Geotech	nical Testing, a	and Site Drainage are inclu-	ded in Install 3.0'
Construction Capital Cost not included in VFL Estimate.	riblective Layer.				
. Revised reagent cost not included in VTD Estimate.	n in Table #3 dated	i July 2, 200	02 - 3 ft. cover	- 6,345 tons of cement (Ar	pendix C-2).
Above is a preliminary estimate and may be revised if selected	for final design -	the consultin	ng costs and es	timating contingency provi	ded in this
spreadsheet are conservative - actual costs may be lower.					
0. For ease of comparison to initial pozzolanic fly ash final cover	r estimate, the san	e consultin	g costs, engine	ering design costs,	
and estimating contingency have been used.					

FINAL COVER ALTERNATIVE: Pozzolanic Fly Leachate Management and Final Cover Alternatives F Hutsonville Ash Management Facility - Unlined Ash Ameren Energy Generating - Hutsonville, Illinois	leport			NRT PROJECT NO.: 1 BY: CAR CI DATE: 6/27/05	375/6.1 HKD BY: BRH EJT (5/19/05
				DATE: 0/2/103	SUB
CONSULTING CAPITAL COSTS		-			TOTA
Consulting Hydrogeologic Evaluation, Engineering Design, Sys Geotechnical Evaluation	tem Installatio	n Oversig	t, Final Sys	stem Documentation	\$500,000
SUBTOTAL, CONSTRUCTION CAPITAL COSTS 30% Estimating Contingency					\$500,000 \$150,000
TOTAL, CONSULTING CAPITAL COSTS					\$650,000
CONSTRUCTION CAPITAL COSTS	QUANTITY	UNIT	UNIT COST	ITEM COST	SUB TOTA
Construction					\$3,241,575
Mob./Demob.	1	LS	\$324,108	\$324,108	
Site Facilities & Maintenance (Erosion Controls)	1	LS	\$8,000	\$8,000	
Regrade Stockpiled Ash to Fill Depressions	50,500	CY	\$1.97	\$99,485	
Excavate Ash From Pond A for Pozzolanic Mix	85,408	CY	\$1.81	\$154,588	
Blend Ash w/ Reagents to Form Pozzolanic Mix	85,408	CY	\$1.86	\$158,859	
Place 3.0' Pozzolanic Ash Final Cover	85,408	CY	\$1.61	\$137,507	
Place Fly Ash From Pond A to Construct Grade	120,700	CY	\$3.42	\$412,794	
Place Rooting Zone to Compete Protective Layer	100,480	CY	\$9.31	\$935,469	
Additional Construction Items Identified by VFL					
Dewatering	1	LS	\$23,951	\$23,951	
Soil Additive Cost - Black Sand ⁸	23,237	TON	\$7.00	\$162,659	
Reagent Cost - Cement ⁸	8,149	TON	\$95.00	\$774,155	
Relocate Sluice Pipes and Supports	1	LS	\$50,000	\$50,000	
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$3,241,575
30% Estimating Contingency					\$972,500
TOTAL, CONSTRUCTION CAPITAL COSTS					\$4,214,075
TOTAL CAPITAL COSTS (Without Additional E	xcavation in P	ond A)			\$4,864,000
ASSUMPTIONS					
<ol> <li>Total area of Pond D for final cover estimated at 966,000 SF, i</li> <li>Pozzolanic fly ash cover consists of: 3 foot Pozzolanic Fly ash</li> </ol>			a Laura		
<ol> <li>Mix Design No. 9 - 85% Fly Ash w/ 15% black sand (wet wei</li> </ol>				thasis) See VEL Techno	lony Corp Tables
4. All estimated final cover alternative material quantities are pro-	ovided in Table 3-	3.	gent (ury weigt	redusts). See VIL Teening	logy corp rables.
5. Earthwork quantities based on VFL Technology Corp. Estimat					
- Earthwork estimates provided by NRT in the original estimat	te are within 5% of	of VFL's Ea	rthwork Estima	ites.	
6. Estimate 85,408 yd ³ of ash excavated from Pond A for pozzola	anic final cover.				
7. Costs for the pozzolanic fly ash cover construction based on es	stimates provided	by VFL Te	chnology Corp	oration in their letter dated	d May 9, 2002.
Several line items from Pozzolanic Fly Ash Final Cover (Initial I	Estimate) are inco	rporated in	this estimate a	s described below:	
Line Items: Site Vegetation Clearing (22 acres), Documentati					in Mob./Demob.
Line Item: Load and Haul to Processing Plant is included in I	Excavate Ash From	m Pond A f	or Pozzolanic	Mix.	

Line Items: Install Beneficial Reuse Ash for Protective Layer, Grain Size Analysis/Geotechnical Testing, and Site Drainage are included in Install 3.0' Pozzolanic Ash Final Cover and Install General Fill to Compete Protective Layer.

Construction Capital Cost not included in VFL Estimate.

 Revised reagent cost provided by VFL Technology Corporation in Table #3 dated July 2, 2002 (Appendix C-2) - 3 ft. cover - 8,149 tons of cement and 23.237 tons of black sand. Addition of black sand will reduce the requirement for fly ash excavation by 15,072 cy (wet weight basis, black sand).

 Above is a preliminary estimate and may be revised if selected for final design - the consulting costs and estimating contingency provided in this spreadsheet are conservative - actual costs may be lower.

 For ease of comparison to initial pozzolanic fly ash final cover estimate, the same consulting costs, engineering design costs, and estimating contingency have been used.

Leachate Management and Final Cover Alternatives R				NRT PROJECT NO.: 1	375/6.1
Hutsonville Ash Management Facility - Unlined Ash		Pond D)	Closure	a but during a finduna	KD BY: BRH
Ameren Energy Generating - Hutsonville, Illinois				DATE: 6/27/05	EJT (5/19/05
CONSULTING CADITAL COSTS					SUB
CONSULTING CAPITAL COSTS					TOTAL
Consulting Hydrogeologic Evaluation, Engineering Design, Sys Geotechnical Evaluation	tem Installation	n Oversig	ht, Final Sys	tem Documentation	\$500,000
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$500,000
30% Estimating Contingency					\$150,000
TOTAL, CONSULTING CAPITAL COSTS					\$650,000
	QUANTITY	UNIT	UNIT	ITEM	SUB
CONSTRUCTION CAPITAL COSTS			COST	COST	TOTAL
Construction					\$4,049,167
Mob./Demob.	1	LS	\$324,108	\$324,108	4 110 12 1101
Site Facilities & Maintenance (Erosion Controls)	1	LS	\$8,000	\$8,000	
Regrade Stockpiled Ash to Fill Depressions	50,500	CY	\$1.97	\$99,485	
Excavate Ash From Pond A for Pozzolanic Mix	85,408	CY	\$1.81	\$154,588	
Blend Ash w/ Reagents to Form Pozzolanic Mix	85,408	CY	\$1.86	\$158,859	
Place 3.0' Pozzolanic Ash Final Cover	85,408	CY	\$1.61	\$137,507	
Place Fly Ash From Pond A to Construct Grade	120,700	CY	\$3.42	\$412,794	
Place Rooting Zone to Compete Protective Layer	100,480	CY	\$9.31	\$935,469	
Additional Construction Items Identified by VFL					
Dewatering	1	LS	\$23,951	\$23,951	
Soil Additive Cost - Black Sand ⁸	23,888	TON	\$7.00	\$167,216	
Reagent Cost - Cement ⁸	16.602	TON	\$95.00	\$1,577,190	
Relocate Sluice Pipes and Supports	1	LS	\$50,000	\$50,000	
SUBTOTAL, CONSTRUCTION CAPITAL COSTS 30% Estimating Contingency					\$4,049,167 \$1,214,800
TOTAL, CONSTRUCTION CAPITAL COSTS					\$5,263,967
TOTAL CAPITAL COSTS (Without Additional E	xcavation in P	ond A)			\$5,914,000

#### ASSUMPTIONS

- 1. Total area of Pond D for final cover estimated at 966,000 SF, approximately 22 acres.
- 2. Pozzolanic fly ash cover consists of: 3 foot Pozzolanic Fly ash Layer 3 foot Protective Soil Layer.
- Mix Design No. 10 85% Fly Ash w/ 15% black sand (wet weight basis) 12.5% cement reagent (dry weight basis). See VFL Technology Corp Tables
   All estimated final cover alternative material quantities are provided in Table 3-3.
- 5. Earthwork quantities based on VFL Technology Corp. Estimates
- Earthwork estimates provided by NRT in the original estimate are within 5% of VFL's Earthwork Estimates.
- 6. Estimate 85,408 yd3 of ash excavated from Pond A for pozzolanic final cover.
- 7. Costs for the pozzolanic fly ash cover construction based on estimates provided by VFL Technology Corporation in their letter dated May 9, 2002. Several line items from *Pozzolanic Fly Ash Final Cover (Initial Estimate)* are incorporated in this estimate as described below:
- Line Items: Site Vegetation Clearing (22 acres), Documentation Surveying, and Revegetation (mulch, seed, fertilizer) are included in *Mob./Demob.* Line Item: Load and Haul to Processing Plant is included in *Excavate Ash From Pond A for Pozzolanic Mix.*
- Line Items: Install Beneficial Reuse Ash for Protective Layer, Grain Size Analysis/Geotechnical Testing, and Site Drainage are included in Install 3.0' Pozzolanic Ash Final Cover and Install General Fill to Compete Protective Layer.

Construction Capital Cost not included in VFL Estimate.

 Revised reagent cost provided by VFL. Technology Corporation in Table #3 dated July 2, 2002 (Appendix C-2) - 3 ft. cover - 16,602 tons of cement and 23,888 tons of black sand. Addition of black sand will reduce the requirement for fly ash excavation by 15,072 cy (wet weight basis, black sand).

 Above is a preliminary estimate and may be revised if selected for final design - the consulting costs and estimating contingency provided in this spreadsheet are conservative - actual costs may be lower.

10. For ease of comparison to initial pozzolanic fly ash final cover estimate, the same consulting costs, engineering design costs,

and estimating contingency have been used.

FINAL COVER ALTERNATIVE: Pozzolanic FI Leachate Management and Final Cover Alternatives	Report			NRT PROJECT NO .:	1375/6.1
Hutsonville Ash Management Facility - Unlined Ash	Impoundment (	(Pond D)	Closure		CHKD BY: BRH
Ameren Energy Generating - Hutsonville, Illinois				DATE: 6/27/05	EJT (5/19/05
CONSULTING CAPITAL COSTS			_		SU TOTA
Consulting Hydrogeologic Evaluation, Engineering Design, Sy Geotechnical Evaluation	stem Installation	n Oversig	ht, Final Sys	tem Documentation	\$500,00
SUBTOTAL, CONSTRUCTION CAPITAL COSTS 30% Estimating Contingenc					\$500,00
TOTAL, CONSULTING CAPITAL COSTS	y				\$150,00 \$650,00
					\$050,00
	QUANTITY	UNIT	UNIT	ITEM	SU
CONSTRUCTION CAPITAL COSTS			COST	COST	TOTA
Construction Mob./Demob.					\$3,589,5
Site Facilities & Maintenance (Erosion Controls)	1	LS	\$324,108	\$324,108	
Regrade Stockpiled Ash to Fill Depressions	1 50,500	LS CY	\$8,000	\$8,000	
Excavate Ash From Pond A for Pozzolanic Mix	70,336	CY	\$1.97	\$99,485	
Blend Ash w/ Reagents to Form Pozzolanic Mix	70,336		\$1.81	\$127,308	
Place 3.0' Pozzolanic Ash Final Cover		CY	\$1.86	\$130,825	
Place Fly Ash From Pond A to Make Grade	70,336	CY	\$1.61	\$113,241	
Place Rooting Zone to Compete Protective Layer	120,700	CY	\$3.42	\$412,794	
Place Rooting Zone to Compete Protective Layer	100,480	CY	\$9.31	\$935,469	
Additional Construction Items Identified by VFL					
Dewatering	1	LS	\$23,951	\$23,951	
Soil Additive Cost - FGD Sludge ⁸	45,985	TON	\$5.00	\$229,925	
Reagent Cost - Cement ⁸	11,941	TON	\$95.00	\$1,134,395	
Relocate Sluice Pipes and Supports	1	LS	\$50,000	\$50,000	
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$3,589,50
30% Estimating Contingency FOTAL, CONSTRUCTION CAPITAL COSTS	y				\$1,076,90
oral, construction carrial costs					\$4,666,40
<b>FOTAL CAPITAL COSTS (Without Additional H</b>	Excavation in P	ond A)	7 -4.5		\$5,316,00
SSUMPTIONS					
. Total area of Pond D for final cover estimated at 966,000 SF,	approximately 22	acres			
Pozzolanic fly ash cover consists of: 3 foot Pozzolanic Fly as			il Laver		
Mix Design No. 14 - 70% Fly Ash w/ 30% FGD Sludge (wet	weight basis) - 109	% cement n	eagent (dry wei	ight basis). See VFL Ter	chnology Corn Table
All estimated final cover alternative material quantities are pr	rovided in Table 3-	3.			corp run
Earthwork quantities based on VFL Technology Corp. Estima - Earthwork estimates provided by NRT in the original estimates		of VFL's Ea	rthwork Estima	utes.	
Estimate 70,336 yd3 of ash excavated from Pond A for pozzo					
. Costs for the pozzolanic fly ash cover construction based on a	estimates provided	by VFL Te	chnology Corp	oration in their letter dat	ed May 9, 2002.
everal line items from Pozzolanic Fly Ash Final Cover (Initial	Estimate) are inco	rporated in	this estimate a	s described below:	
Line Items: Site Vegetation Clearing (22 acres), Documentat	ion Surveying, and	Revegetat	ion (mulch, see	d, fertilizer) are included	d in Mob./Demob.
Line Item: Load and Haul to Processing Plant is included in	Excavate Ash From	m Pond A f	or Pozzolanic M	Mix.	
Line Items: Install Beneficial Reuse Ash for Protective Laye ozzolanic Ash Final Cover and Install General Fill to Compet	e Protective Laws	ysis/Geotec	hnical Testing,	and Site Drainage are in	ncluded in Install 3.
Construction Capital Cost not included in VEL Estimate	a rolective Luyer.				

Construction Capital Cost not included in VFL Estimate.

 Revised reagent cost provided by VFL Technology Corporation in Table #3 dated July 2, 2002 (Appendix C-2) - 3 ft. cover - 11,941 tons of cement and 45,985 tons of FGD Sludge. Addition of FGD sludge will reduce the requirement for fly ash excavation by 30,111.9 cy (wet weight basis, FGD sludge).

 Above is a preliminary estimate and may be revised if selected for final design - the consulting costs and estimating contingency provided in this spreadsheet are conservative - actual costs may be lower.

10. For ease of comparison to initial pozzolanic fly ash final cover estimate, the same consulting costs, engineering design costs,

and estimating contingency have been used.

Leachate Management and Final Cover Alternatives Re				NRT PROJECT NO	.: 1375/6.1
Hutsonville Ash Management Facility - Unlined Ash Ir Ameren Energy Generating - Hutsonville, Illinois	npoundment (	(Pond D)	Closure	BY: CAR DATE: 6/27/05	CHKD BY: BRH
				Brite, GEnoo	SUB
CONSULTING CAPITAL COSTS					TOTAI
Consulting Hydrogeologic Evaluation, Engineering Design, Syste	em Installatio	n Oversigl	ht, Final Sys	tem Documentation	\$150,000
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$150,000
30% Estimating Contingency TOTAL, CONSULTING CAPITAL COSTS					\$45,000 <b>\$200,000</b>
CONSTRUCTION CAPITAL COSTS	QUANTITY	UNIT	UNIT COST	ITEM COST	SUB TOTAI
<u>construction chi fine costs</u>			0001		10174
General Construction					\$108,000
Design Pump Test	1	LS	\$50,000	\$50,000	4700,000
Mob./Demob.	1	LS	\$15,000	\$15,000	
Erosion Controls	1	LS	\$4,000	\$4,000	
Site Vegetation Clearing	1	LS	\$5,000	\$5,000	
Startup/Testing	1	LS	\$20,000	\$20,000	
Construction and Documentation Surveying	1	LS	\$10,000	\$10,000	
Restoration of Disturbed Areas	1	LS	\$4,000	\$4,000	
Extraction Well Construction			,	,	\$311,700
Extraction Well Installation	11	WELL	\$5,000	\$55,000	
Trenching	2,600	LF	\$4.00	\$10,400	
Underground Piping to Drainage Collection Pond C	2,600	LF	\$8.00	\$20,800	
Electrical and Control Wiring for Each Well	13,050	LF	\$5.00	\$65,300	
Pre-Engineering System Enclosure and Foundation	1	LS	\$40,000	\$40,000	
PLC Control System and Electrical	1	LS	\$40,000	\$40,000	
Groundwater Extraction Pumps	11	EA	\$5,000	\$55,000	
Additional Trench Backfill	1,300	TONS	\$4.00	\$5,200	
Stockpile and Replace Trench Material	4,000	CY	\$5.00	\$20,000	
South Interceptor/Drain Trench Construction					\$143,500
Interceptor Trench Excavation	1,800	CY	\$6.00	\$10,800	
Install 8.5' Avg. (1") Washed River Rock	2,000	TONS	\$12.00	\$24,000	
Install 6" Bentonite Seal	90	TONS	\$90.00	\$8,100	
Install General Fill to Grade (6.5' Avg.)	750	CY	\$4.00	\$3,000	
Blend Overburden Trench Spoil Into Existing Grade:	1,000	CY	\$2.00	\$2,000	
Install Leachate Collection Sumps	3	EA	\$10,000	\$30,000	
Pumps for Drainage Collection Sumps (2 Each)	6	EA	\$3,000	\$18,000	
6" HDPE Drain Tile For Interceptor Trench	1,000	LF	\$6.00	\$6,000	
Underground Piping to Interim Pond B	1,450	LF	\$8.00	\$11,600	
Electrical and Control Wiring for Each Well	6,000	LF	\$5.00	\$30,000	
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$563,200
30% Estimating Contingency TOTAL, CONSTRUCTION CAPITAL COSTS				<u></u>	\$169,000 \$730,000

Leachate Management and Final Cover Alternatives Rep Hutsonville Ash Management Facility - Unlined Ash Imp Ameren Energy Generating - Hutsonville, Illinois		t (Pond D)	Closure	NRT PROJECT NO.: BY: CAR C DATE: 6/27/05	HKD BY: BRH
					SUE
ANNUAL COSTS					
Annual O & M Costs					\$43,00
O & M Sampling Labor & Equipment	1	LS	\$5,000	\$5,000	
Discharge Sampling Analytical	1	LS	\$3,000	\$3,000	
Annual Equipment Maintenance	1	LS	\$5,000	\$5,000	
Electric Costs	1	LS	\$30,000	\$30,000	
ANNUAL SUBTOTAL					\$43,00
30% Estimating Contingency					\$12,900
TOTAL ANNUAL COSTS	,				\$56.00

#### ASSUMPTIONS

1. Leachate collection along east via 11 wells for groundwater extraction - 200 ft. spacings - total flow of approximately 10 to 25 gpm.

2. Leachate collection along south via 1,000 foot long interceptor/drain trench - total flow of approximately 10 to 25 gpm.

3. Trench design consists of 6' toll' washed river rock w/ 6" HDPE drain tile, followed by 6" bentonite seal, backfilled to grade with general fill.

4. This options assumes no treatment of extracted leachate and discharge directly to the Interim Pond and/or the Drainage Collection Pond.

5. Results of further hydrogeological assessment and design pump test could impact size and scope of the leachate collection system.

6. Additional sources of estimated costs: RS Means Site Work & Landscape Cost Data.

Leachate Management and Final Cover Alternatives Re Hutsonville Ash Management Facility - Unlined Ash In		(Pond D)	Closure	NRT PROJECT NO. BY: EJT	: 1375/6.1 CHKD BY: CAR
Ameren Energy Generating - Hutsonville, Illinois	•			DATE: 6/27/05	
CONSULTING CAPITAL COSTS					SUB TOTA
Consulting Hydrogeologic Evaluation, Engineering Design, Syst	em Installatio	n Oversig	ht, Final Sy	stem Documentatio	\$150,000
SUBTOTAL, CONSTRUCTION CAPITAL COSTS 30% Estimating Contingency					\$150,000 \$45,000
TOTAL, CONSULTING CAPITAL COSTS					\$200,000
	OUANTERN	11110			CUD
CONSTRUCTION CAPITAL COSTS	QUANTITY	UNIT	UNIT COST	ITEM COST	SUB TOTA
General Construction					\$108,000
Design Pump Test	1	LS	\$50,000	\$50,000	
Mob./Demob.	1	LS	\$15.000	\$15,000	
Erosion Controls	1	LS	\$4,000	\$4,000	
Site Vegetation Clearing	1	LS	\$5,000	\$5,000	
Startup/Testing	1 ·	LS	\$20,000	\$20,000	
Construction and Documentation Surveying	1	LS	\$10,000	\$10,000	
Restoration of Disturbed Areas	1	LS	\$4.000	\$4,000	
Extraction Well Construction					\$271,20
Extraction Well Installation	5	WELL	\$15,000	\$75,000	
Trenching	1,950	LF	\$4.00	\$7,800	
Underground Piping to Drainage Collection Pond C	1,950	LF	\$8.00	\$15,600	
Electrical and Control Wiring for Each Well	9,750	LF	\$5.00	\$48,800	
Pre-Engineered System Enclosure and Foundation	1	LS	\$40,000	\$40,000	
PLC Control System and Electrical	1	LS	\$40,000	\$40,000	
Groundwater Extraction Pumps	5	EA	\$5,000	\$25,000	
Additional Trench Backfill	1,000	TONS	\$4.00	\$4,000	
Stockpile and Replace Trench Material	3,000	CY	\$5.00	\$15,000	
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$379,200
30% Estimating Contingency					\$113,800
TOTAL, CONSTRUCTION CAPITAL COSTS					\$490,000
TOTAL CAPITAL COSTS					\$690,000
ANNUAL COSTS				•	
Annual O & M Costs					\$40,000
O & M Sampling Labor & Equipment	1	LS	\$20,000	¢20,000	\$40,000
Discharge Sampling Analytical	1	LS	\$20,000 \$5,000	\$20,000 \$5,000	
Annual Equipment Maintenance	1	LS	\$3,000 \$5,000	\$5,000	
Electric Costs	ł	LS	\$10,000	\$10,000	
ANNUAL SUBTOTAL					\$40,00
30% Estimating Contingency					\$12,000
TOTAL ANNUAL COSTS					\$52,000

1. Groundwater extraction at southeast corner of Pond D via 5 wells - 200 ft. spacings - total flow of approximately 250 gpm.

2. Groundwater extraction not necessary east of MW-6 since existing site geology information suggests that aquifer "pinches out" east of this location.

3. Groundwater extraction not necessary north of MW-7 based upon observed extent of impact to deep alluvium.

4. Annual O&M cost represents average lifecycle cost; actual O&M costs will likely be higher than average initially.

4. This options assumes no treatment of extracted leachate and discharge directly to the Interim Pond and/or the Drainage Collection Pond.

5. Results of further hydrogeological assessment and design pump test could impact size and scope of the leachate collection system.

6. Additional sources of estimated costs: RS Means Site Work & Landscape Cost Data.

LEACHATE MANAGEMENT ALTERNATIVE: 1 Leachate Management and Final Cover Alternatives Ro Hutsonville Ash Management Facility - Unlined Ash In	eport			NRT PROJECT NO.: BY: CAR 0	1375/6.1 CHKD BY: BRH
Ameren Energy Generating - Hutsonville, Illinois		(10114.20)	0.000	DATE: 6/27/05	
					SUB
CONSULTING CAPITAL COSTS					TOTAL
Consulting Hydrogeologic Evaluation, Engineering Design, Syste	em Installation	n Oversigl	ht, Final Sys	stem Documentation	\$150,000
SUBTOTAL, CONSTRUCTION CAPITAL COSTS 30% Estimating Contingency					\$150,000 \$45,000
TOTAL, CONSULTING CAPITAL COSTS					\$200,000
CONSTRUCTION CAPITAL COSTS	QUANTITY	UNIT	UNIT COST	ITEM COST	SUB TOTAI
Construction					£104.600
General Construction Design Pump Test	J	LS	\$25,000	\$25,000	\$184,600
Mob./Demob.	1	LS	\$25,000 \$25,000	\$25,000	
Erosion Controls	1	LS	\$23,000	\$25,000 \$8,000	
Site Vegetation Clearing	]	LS	\$10,000	\$10,000	
Pre-Engineering System Enclosure and Foundation	1	LS	\$40,000	\$40,000	
PLC Control System and Electrical	1	LS	\$30,000	\$30,000	
Blend Overburden Trench Spoil Into Existing Grade	3,300	CY	\$2.00	\$6,600	
Startup/Testing	5,500	LS	\$20,000	\$20,000	
Documentation Surveying	1	LS	\$10,000	\$10,000	
Restoration of Disturbed Areas	1	LS	\$10,000	\$10,000	
East Interceptor/Drain Trench Construction		1.5	\$10,000	\$10,000	\$247,500
Interceptor Trench Excavation	4,800	CY	\$6.00	\$28,800	\$217,500
Remove and Replace Sheet Pile Tiebacks (34)	34	EA	\$1,000	\$34,000	
Install 10' (I") Washed River Rock (Drainage Layer)	4,200	TONS	\$12.00	\$50,400	
Install 6" Bentonite Seal	210	TONS	\$90.00	\$18,900	
Install General Fill to Grade (9.5' Avg)	750	CY	\$4.00	\$3,000	
Install Leachate Collection Sumps	4	EA	\$10,000	\$40,000	
Pumps for Drainage Collection Sumps (2 Each)	8	EA	\$3,000	\$24,000	
6" HDPE Drain Tile For Interceptor Trench	2,300	LF	\$6.00	\$13,800	
Underground piping to Drainage Collection Pond C	2,200	LF	\$8.00	\$17,600	
Electrical and Control Wiring for Each Well	3,400	LF	\$5.00	\$17,000	
South Interceptor/Drain Trench Construction					\$141,500
Interceptor Trench Excavation	1,800	CY	\$6.00	\$10,800	
Install 8.5' Avg. (1") Washed River Rock	2,000	TONS	\$12.00	\$24,000	
Install 6" Bentonite Seal	90	TONS	\$90.00	\$8,100	
Install General Fill to Grade (6.5' Avg.)	750	CY	\$4.00	\$3,000	
Install Leachate Collection Sumps	3	EA	\$10,000	\$30,000	
Pumps for Drainage Collection Sumps (2 Each)	6	EA	\$3,000	\$18,000	
6" HDPE Drain Tile For Interceptor Trench	1,000	LF	\$6.00	\$6,000	
Underground Piping to Interim Pond B	1,450	LF	\$8.00	\$11,600	
Electrical and Control Wiring for Each Well	6,000	LF	\$5.00	\$30,000	
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$573,600
30% Estimating Contingency					\$172,100
TOTAL, CONSTRUCTION CAPITAL COSTS					\$750,000
TOTAL CAPITAL COSTS					\$950,000

.:

Leachate Management and Final Cover Alternatives Hutsonville Ash Management Facility - Unlined Ash	NRT PROJECT NO.: 1375/6.1 BY: CAR CHKD BY:				
Ameren Energy Generating - Hutsonville, Illinois	DATE: 6/27/05				
					SUB
ANNUAL COSTS					
Annual O & M Costs					\$36,000
O & M Sampling Labor & Equipment	1	LS	\$5,000	\$5,000	
Discharge Sampling Analytical	1	LS	\$3,000	\$3,000	
Annual Equipment Maintenance	1	LS	\$8,000	\$8,000	
Electric Costs	1	LS	\$20,000	\$20,000	
ANNUAL SUBTOTAL					\$36,00
30% Estimating Contingenc	У				\$10,800
TOTAL ANNUAL COSTS	·				\$47,00

#### ASSUMPTIONS

1. Leachate collection via a 3,300 foot long Interceptor Drain/Trench sloped (1.0%) to seven collection sumps; total groundwater extraction 10-25 GPM.

2. Trench design consists of 6' to 10' washed river rock w/ 6" HDPE drain tile, followed by 6" bentonite seal, backfilled to grade with general fill.

3. The east trench is designed to extract leachate just above the sandy silt and clay / alluvial sand and gravel interface along the Wabash River.

4. This options assumes no treatment of extracted leachate and discharge directly to the Interim Pond and/or the Drainage Collection Pond.

5. Results of further hydrogeological assessment and design pump test could impact size and scope of the leachate collection system.

6. Additional sources of estimated costs: RS Means Site Work & Landscape Cost Data.

LEACHATE MANAGEMENT ALTERNATIVE: 1 Leachate Management and Final Cover Alternatives Re		ens.		NRT PROJECT NO .:	1375/6.1
Hutsonville Ash Management Facility - Unlined Ash In		(Pond D)	Closure		HKD BY: BRH
Ameren Energy Generating - Hutsonville, Illinois				DATE: 6/27/05	
					SUE
CONSULTING CAPITAL COSTS					ΤΟΤΑ
<u>Consulting</u>					
Hydrogeologic Evaluation, Engineering Design, Syste	em Installation	n Oversigl	ht, Final Sys	tem Documentation	\$150,000
SUBTOTAL, CONSTRUCTION CAPITAL COSTS 30% Estimating Contingency					\$150,000 \$45,000
TOTAL, CONSULTING CAPITAL COSTS					\$200,000
	QUANTITY	UNIT	UNIT	ITEM	SUE
CONSTRUCTION CAPITAL COSTS			COST	COST	ΤΟΤΑ
General Construction					\$118,000
Design Pump Test	1	LS	\$50,000	\$50,000	\$116,000
Mob./Demob.	1	LS	\$25,000	\$25,000	
Erosion Controls	1	LS	\$4,000	\$4,000	
Site Vegetation Clearing	1	LS	\$5,000	\$5,000	
Startup/Testing	1	LS	\$20,000	\$20,000	
Documentation Surveying	1	LS	\$10,000	\$10,000	
Restoration of Disturbed Areas	1	LS	\$4,000	\$4,000	
Horizontal Well Construction					\$382,80
Horizontal Well Drilling and Installation	2,100	LF	\$100.00	\$210,000	
Horizontal Well Materials	2,100	LF	\$15.00	\$31,500	
Pumps for Horizontal Well	5	EA	\$5,000	\$25,000	
Underground piping to Drainage Collection Pond C	600	LF	\$8.00	\$4,800	
Electrical and Control Wiring for Each Well	6,250	LF	\$5.00	\$31,300	
Pre-Engineering System Enclosure and Foundation	1	LS	\$40,000	\$40,000	
PLC Control System and Electrical	i	LS	\$40,000	\$40,000	
Blend Overburden Trench Spoil Into Existing Grade:	100	CY	\$2.00	\$200	
South Interceptor/Drain Trench Construction					\$143,50
Interceptor Trench Excavation	1,800	CY	\$6.00	\$10,800	
Install 8.5' Avg. (1") Washed River Rock	2,000	TONS	\$12.00	\$24,000	
Install 6" Bentonite Seal	90	TONS	\$90.00	\$8,100	
Install General Fill to Grade (6.5' Avg.)	750	CY	\$4.00	\$3,000	
Blend Overburden Trench Spoil Into Existing Grade:	1,000	CY	\$2.00	\$2,000	
Install Leachate Collection Sumps	3	EA	\$10,000	\$30,000	
Pumps for Drainage Collection Sumps (2 Each)	6	EA	\$3,000	\$18,000	
6" HDPE Drain Tile For Interceptor Trench	1,000	LF	\$6.00	\$6,000	
Underground Piping to Interim Pond B	1,450	LF	\$8.00	\$11,600	
Electrical and Control Wiring for Each Well	6,000	LF	\$5.00	\$30,000	
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$644,300
30% Estimating Contingency					\$193,300
TOTAL, CONSTRUCTION CAPITAL COSTS					\$155,500

.

Leachate Management and Final Cover Alternatives Rep Hutsonville Ash Management Facility - Unlined Ash Imp	NRT PROJECT NO BY: CAR	CHKD BY: BRH			
Ameren Energy Generating - Hutsonville, Illinois				DATE: 6/27/05	SUE
ANNUAL COSTS					
Annual O & M Costs					\$43,00
O & M Sampling Labor & Equipment	1	LS	\$5,000	\$5,000	
Discharge Sampling Analytical	1	LS	\$3,000	\$3,000	
Annual Equipment Maintenance	1	LS	\$10,000	\$10,000	
Electric Costs	1	LS	\$25,000	\$25,000	
ANNUAL SUBTOTAL					\$43,00
30% Estimating Contingency					\$12,900
TOTAL ANNUAL COSTS					\$56.00

#### ASSUMPTIONS

1. Leachate collection via (4) 400' horizontal wells and (1) 500' horizontal well with submersible pumps; total groundwater extraction 10-25 GPM.

2. Leachate collection along south via 1,000 foot long interceptor/drain trench - total flow of approximately 10 to 25 gpm.

2. Horizontal well design consists of 8" Dia. HDPE Screen.

3. Horizontal well system installed near the sandy silt and clay / alluvial sand and gravel interface.

4. This options assumes no treatment of extracted leachate and discharge directly to the Interim Pond and/or the Drainage Collection Pond.

5. Results of further hydrogeological assessment and design pump test could impact size and scope of the leachate collection system.

6. Additional sources of estimated costs: RS Means Site Work & Landscape Cost Data.

<b>LEACHATE MANAGEMENT ALTERNATIVE:</b> Leachate Management and Final Cover Alternatives R Hutsonville Ash Management Facility - Unlined Ash I Ameren Energy Generating - Hutsonville, Illinois	NRT PROJECT NC BY: CAR DATE: 6/27/05	0.: 1375/6.1 CHKD BY: BRH EJT (5/19/05) SUB-			
CONSULTING CAPITAL COSTS					TOTAL
<u>Consulting</u> Hydrogeologic Evaluation, Engineering Design, Syst	em Installatio	n Oversig	ht, Final Sys	tem Documentatio	ı \$500,000
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$500,000
30% Estimating Contingency					\$150,000
TOTAL, CONSULTING CAPITAL COSTS					\$650,000
CONSTRUCTION CADITAL COSTS	QUANTITY	UNIT	UNIT	ITEM	
CONSTRUCTION CAPITAL COSTS			COST	COST	TOTAL
Construction					\$14,529,000
Bench Scale / Pilot Testing	1	LS	\$50,000	\$50,000	, ,
Stabilization Drill Rig Mobilization/Demob.	1	LS	\$250,000	\$250,000	
Fencing and Erosion Control	1	LS	\$20,000	\$20,000	
Stabilizing Reagent Materials	280,000	CY	\$19.00	\$5,320,000	
Treatment Via Shallow Soil Mixing Rig (SSM)	280,000	CY	\$30.00	\$8,400,000	
Additional Testing/Quality Control	1	LS	\$250,000	\$250,000	1
Regrade Overburden From SSM Treatment	112,000	CY	\$2.00	\$224,000	1
Documentation Surveying	1	LS	\$15,000	\$15,000	)
SUBTOTAL, CONSTRUCTION CAPITAL COSTS 					\$14,529,000 \$4,358,700
TOTAL, CONSTRUCTION CAPITAL COSTS					\$18,900,000

#### **TOTAL CAPITAL COSTS**

\$20,000,000

#### ASSUMPTIONS

1. Total estimated area for saturated ash: areal extent ~ 790,000 ft², average thickness ~ 9.5 ft, average depth to bottom of saturated ash ~ 25 ft.

2. Based on above estimates 280,000 yd³ (790,000 ft² x 9.5 ft) targeted for SSM treatment.

3. This estimate is for stabilization of saturated ash only.

4. See final cover estimates for costs associated with final landfill cover construction less backfill costs (overburden from SSM treatment used for fill).

Earthwork quantities based on a 1.6 ton : 1 cubic yard (CY) ratio; all earthwork quantities are approximate and need to be field verified during design.
 Additional sources of estimated costs: previous ash landfill cover construction, RS Means Site Work & Landscape Cost Data.

Leachate Management and Final Cover Alternatives Re				NRT PROJECT NO	.: 1375/6.1
Hutsonville Ash Management Facility - Unlined Ash Ir	npoundment (	Pond D)	Closure	BY: CAR	CHKD BY: BRH
Ameren Energy Generating - Hutsonville, Illinois				DATE: 6/27/05	EJT (5/19/05)
					SUB-
CONSULTING CAPITAL COSTS					TOTAL
Consulting Hydrogeologic Evaluation, Engineering Design, Syste	em Installatio	n Oversig	ht, Final Syst	em Documentation	\$500,000
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$500,000
30% Estimating Contingency					\$150,000
TOTAL, CONSULTING CAPITAL COSTS	· · · · · · · · · · · · · · · · · · ·				\$650,000
	QUANTITY	UNIT	UNIT	ITEM	SUB-
CONSTRUCTION CAPITAL COSTS			COST	COST	TOTAL
Construction					\$17,345,000
Mob./Demob.	1	LS	\$50,000.00	\$50,000	
Site Facilities & Maintenance	1	LS	\$8,000.00	\$8,000	
Site Vegetation Clearing (22 acres)	22	ACRES	\$1,000.00	\$22,000	
Excavate Ash Overburden & Stockpile	550,000	CY	\$4.00	\$2,200,000	
Excavate Saturated Ash via Mudcat & Stockpile	280,000	CY	\$7.00	\$1,960,000	
Surface Water / Drainage Control / Erosion Controls	1	LS	\$100,000.00	\$100,000	
Import General Fill, Place & Compact	430,000	CY	\$8.40	\$3,612,000	
Off-Site Disposal/Recycling of Saturated Ash	280,000	CY	\$25.50	\$7,140,000	
Overburden Ash Replacement/Compaction/Regrade	550,000	CY	\$4.00	\$2,200,000	
Grain Size Analysis/Geotechnical Testing	1	LS	\$16,000.00	\$16,000	
Documentation Surveying	1	LS	\$15,000.00	\$15,000	
Revegetation (mulch, seed, fertilizer)	22	ACRES	\$1,000.00	\$22,000	
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$17,345,000
SUBIDIAL, CONSTRUCTION CAPITAL COSIS					

#### **TOTAL CAPITAL COSTS**

#### ASSUMPTIONS

1. Total estimated area for saturated ash: areal extent ~ 790,000  $ft^2$ , average thickness ~ 9.5 ft, average depth to bottom of saturated ash ~ 25 ft (Table 3-2).

2. Based on above estimates: 280,000 yd³ saturated ash (790,000 ft² x 9.5 ft); 550,000 yd³ overburden ash (790,000 ft² x 15.5 ft+ 80,000 yd³ - 2004 transfer) targeted for excavation (Table 3-2).

3. Estimate includes removal of saturated ash and replacement with clean fill to approximately 5 feet above the static water table ~ 430,000 yd³.

4. Excavated saturated ash to be stockpiled, dried and disposed/recycled off-site; overburden ash to be replaced atop clean fill.

5. See landfill cap estimates for costs associated with final landfill cover construction less backfill costs (placement of additional fill will raise grade).

6. Earthwork quantities based on a 1.6 ton : I cubic yard (CY) ratio; all earthwork quantities are approximate and need to be field verified during design.

7. Based on numbers discussed during 6-15-01 meeting including: \$4.00/ton to haul clean fill on-site.

 Off-site disposal/recycling of ash cost based on previous cost estimates prepared by Hutsonville Power Station personnel for similar off-site disposal (\$7.00/ton transportation, \$7.40/ton disposal, \$1.50/ton loading @ 1.6 tons/yd³ ~ \$25.50/yd³).

This cost could significantly increase with variable landfill pricing.

9. Additional sources of estimated costs: previous ash landfill cover construction, RS Means Site Work & Landscape Cost Data.

10. Above is a preliminary estimate and may be revised if selected for final design.

\$23,000,000

					.: 1375/6.1
Hutsonville Ash Management Facility - Unlined Ash In	npoundment	(Pond D)	Closure	BY: CAR	CHKD BY: BRH
Ameren Energy Generating - Hutsonville, Illinois				DATE: 6/27/05	EJT (5/19/05
					SUB
CONSULTING CAPITAL COSTS					TOTAL
<u>Consulting</u> Hydrogeologic Evaluation, Engineering Design, Syst	em Installatio	n Oversig	ht, Final Syst	em Documentation	\$500,000
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$500,000
30% Estimating Contingency					\$150,000
TOTAL, CONSULTING CAPITAL COSTS					\$650,000
	QUANTITY	UNIT	UNIT	ГТЕМ	SUB
CONSTRUCTION CAPITAL COSTS			COST	COST	TOTAI
Construction		-			\$25,558,000
Mob./Demob.	1	LS	\$50,000.00	\$50,000	
Site Facilities & Maintenance	1	LS	\$8,000.00	\$8,000	
Site Vegetation Clearing (22 acres)	22	ACRES	\$1,000.00	\$22,000	
Excavate Ash & Stockpile	550,000	CY	\$4.00	\$2,200,000	
Excavate Saturated Ash via Mudcat & Stockpile	280,000	CY	\$7.00	\$1,960,000	
Surface Water / Drainage Control / Erosion Controls	1	LS	\$100,000.00	\$100,000	
Off-Site Disposal/Recycling of Ash	830,000	CY	\$25.50	\$21,165,000	
Grain Size Analysis/Geotechnical Testing	1	LS	\$16,000.00	\$16,000	
Documentation Surveying	1	LS	\$15,000.00	\$15,000	
Revegetation (mulch, seed, fertilizer)	22	ACRES	\$1,000.00	\$22,000	
SUBTOTAL CONSTRUCTION CADITAL COSTS					\$25,558,000
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					

### TOTAL CAPITAL COSTS

#### **ASSUMPTIONS**

1. Total estimated area for saturated ash: areal extent ~ 790,000  $ft^2$ , average thickness ~ 9.5 ft, average depth to bottom of saturated ash ~ 25 ft.

2. Based on above estimates: 280,000 yd³ saturated ash (790,000 ft² x 9.5 ft)

3. Total estimated area for ash: areal extent ~ (22 acres) 966,000 ft², average thickness estimated from Geoprobe boring logs (20.9 feet).

4. Based on above estimates:  $830,000 \text{ yd}^3$  ash (966,000 ft² x average thickness [20.9 feet] + 80,000 yd³ ash transfer in 2004).

5. Estimate includes removal of dry ash (550,000 yd³) and saturated ash (280,000 yd³).

6. All estimated areas and volumes are provided in Table 3-2.

7. Excavated ash and saturated ash to be stockpiled, dried and disposed/recycled off-site

8. This estimate does not include replacement of clean fill to an elevation above the static water table.

9. Earthwork quantities based on a 1.6 ton : 1 cubic yard (CY) ratio; all earthwork quantities are approximate and need to be field verified during design.

Off-site disposal/recycling of ash cost based on previous cost estimates prepared by Hutsonville Power Station personnel for similar off-site disposal (\$7.00/ton transportation, \$7.40/ton disposal, \$1.50/ton loading @ 1.6 tons/yd³ ~ \$25.50/yd³).

This cost could significantly increase with variable landfill pricing.

11. Additional sources of estimated costs: previous final cover construction, RS Means Site Work & Landscape Cost Data.

12. Above is a preliminary estimate and may be revised if selected for final design.

\$34,000,000

LEACHATE MANAGEMENT ALTERNATIVE: In Leachate Management and Einel Cover Alternatives Particular		raniv i ren	ch (South A	NRT PROJECT NO.: 1	275161
Leachate Management and Final Cover Alternatives Rep					
Hutsonville Ash Management Facility - Unlined Ash Im Ameren Energy Generating - Hutsonville, Illinois	ipoundment (	Pond D) C	losure	BY: CAR C DATE: 6/27/05	HKD BY: BRH
American Energy Generating - Hutsonvine, Inniois				DATE. 0/2//05	SUE
CONSULTING CAPITAL COSTS				······	TOTA
Consulting					
Hydrogeologic Evaluation, Engineering Design, Syste	m Installation	Oversigh	it, Final Sys	tem Documentation	\$70,000
SUBTOTAL, CONSTRUCTION CAPITAL COSTS 30% Estimating Contingency					\$70,000 \$21,000
TOTAL, CONSULTING CAPITAL COSTS					\$90,000
	OUANTITY	UNIT	UNIT	ITEM	SUE
CONSTRUCTION CAPITAL COSTS		own	COST	COST	тота
South Interceptor/Drain Trench Construction					\$281,50
Design Pump Test	1	LS	\$15,000	\$15,000	
Mob./Demob.	1	LS	\$20,000	\$20,000	
Erosion Controls	1	LS	\$4,000	\$4,000	
Site Vegetation Clearing	1	LS	\$5,000	\$5,000	
Pre-Engineering System Enclosure and Foundation	1	LS	\$40,000	\$40,000	
PLC Control System and Electrical	1	LS	\$30,000	\$30,000	
Blend Overburden Trench Spoil Into Existing Grades	1,000	CY	\$2.00	\$2,000	
Startup/Testing	1	LS	\$15,000	\$15,000	
Documentation Surveying	1	LS	\$5,000	\$5,000	
Restoration of Disturbed Areas	1	LS	\$4,000	\$4,000	
Interceptor Trench Excavation	1,800	CY	\$6.00	\$10,800	
Install 8.5' Avg. (1") Washed River Rock	2,000	TONS	\$12.00	\$24,000	
Install 6" Bentonite Seal	90	TONS	\$90.00	\$8,100	
Install General Fill to Grade (6.5' Avg.)	750	CY	\$4.00	\$3,000	
Install Leachate Collection Sumps	3	EA	\$10,000	\$30,000	
Pumps for Drainage Collection Sumps (2 Each)	6	EA	\$3,000	\$18.000	
6" HDPE Drain Tile For Interceptor Trench	1.000	LF	\$6.00	\$6,000	
Underground Piping to Interim Pond B	1,450	LF	\$8.00	\$11,600	
Electrical and Control Wiring for Each Well	6,000	LF	\$5.00	\$30,000	
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$281,500
30% Estimating Contingency					\$84,500
TOTAL, CONSTRUCTION CAPITAL COSTS			·. ·		\$370,000
TOTAL CAPITAL COSTS	· · ·				\$460,000
ANNUAL COSTS					AAA AA
Annual O & M Costs		10	6 E 000	AF 000	\$23,00
O & M Sampling Labor & Equipment	1	LS	\$5,000	\$5,000	
Discharge Sampling Analytical	1	LS	\$3,000	\$3,000	
Annual Equipment Maintenance Electric Costs	1	LS LS	\$5,000 \$10,000	\$5,000 \$10,000	
ANNUAL SUBTOTAL					\$23,00
30% Estimating Contingency					\$6,900
TOTAL ANNUAL COSTS					\$30,00

1. Leachate collection along south via 1,000 foot long interceptor/drain trench - total flow of approximately 10 to 25 gpm.

2. Trench design consists of 6' to 11' washed river rock w/ 6" HDPE drain tile, followed by 6" bentonite seal, backfilled to grade with general fill.

3. This options assumes no treatment of extracted leachate and discharge directly to the Interim Pond.

4. Results of further hydrogeological assessment and design pump test could impact size and scope of the leachate collection system.

5. Additional sources of estimated costs: RS Means Site Work & Landscape Cost Data.

FINAL COVER ALTERNATIVE: Geosynthetic F Leachate Management and Final Cover Alternatives R				NRT PROJECT NO.: 1	375/6.1	
Hutsonville Ash Management Facility - Unlined Ash I	mpoundment	(Pond D) (	Closure	BY: CAR CH	HKD BY: BRH	
Ameren Energy Generating - Hutsonville, Illinois	•			DATE: 6/27/05	EJT (5/19/05	
					SUB-	
CONSULTING CAPITAL COSTS					TOTAL	
Consulting Hydrogeologic Evaluation, Engineering Design, Syst	em Installatio	n Oversigł	nt, Final Sys	tem Documentation	\$400,000	
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$400,000	
30% Estimating Contingency					\$120,000	
TOTAL, CONSULTING CAPITAL COSTS					\$520,000	
CONSTRUCTION CAPITAL COSTS	QUANTITY	UNIT	UNIT COST	ITEM COST	SUB- TOTAL	
Construction					\$3,602,300	
Mob./Demob.	1	LS	\$25,000	\$25,000	\$5,002,500	
Site Facilities & Maintenance (Erosion Controls)	1	LS	\$8,000	\$8,000		
Site Vegetation Clearing (22 acres)	22	ACRES	\$1,000	\$22,000		
Regrade Stockpiled Ash to Fill Depressions	50,500	CY	\$2.00	\$101,000		
4" Bedding Layer for PVC (Silty Sand)	12,000	CY	\$12.00	\$144,000		
Install 30 mil PVC Geomembrane Cover	966,000	SF	\$0.23	\$222,200		
Install 200 mil Geocomposite Drainage Layer	966,000	SF	\$0.28	\$270,500		
Place Rooting Zone to Complete Protective Layer	105,400	CY	\$8.40	\$885,400		
Place Beneficial Reuse Ash to Construct Grade	20,000	CY	\$4.00	\$80,000		
Place General Fill to Construct Grade	206,100	CY	\$8.40	\$1,731,200		
Grain Size Analysis/Geotechnical Testing	1	LS	\$10,000	\$10,000		
Site Drainage/piping	22	ACRES	\$3,000	\$66,000		
Documentation Surveying	1	LS	\$15,000	\$15,000		
Revegetation (mulch, seed, fertilizer)	22	ACRES	\$1,000	\$22,000		
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$3,602,300	
30% Estimating Contingency					\$1,080,700	
TOTAL, CONSTRUCTION CAPITAL COSTS					\$4,700,000	
TOTAL CAPITAL COSTS					\$5,200,000	

### **TOTAL CAPITAL COSTS**

#### ASSUMPTIONS

1. Total area of Pond D for final cover estimated at 966,000 SF, approximately 22 acres.

2. Geosynthetic Cover consists of: 4" Bedding layer - 30 mil PVC Geomembrane - 200 mil Geocomposite Drainage Layer - 3 foot Protective Soil Layer.

3. All estimated final cover alternative material quantities are provided in Table 3-3.

4. Earthwork quantities based on a 1.6 ton : 1 cubic yard (CY) ratio; all earthwork quantities are approximate and need to be field verified during design.

5. Above costs based on numbers discussed during 6-15-01 meeting including; \$4.00/ton to haul clean fill on-site.

6. Additional sources of estimated costs: previous final cover construction, RS Means Site Work & Landscape Cost Data.

FINAL COVER ALTERNATIVE: Compacted Cla Leachate Management and Final Cover Alternatives R				NRT PROJECT NO	.: 1375/6.1	
Hutsonville Ash Management Facility - Unlined Ash I	mpoundment	(Pond D) C	Closure	BY: CAR	CHKD BY: BRH	
Ameren Energy Generating - Hutsonville, Illinois	-			DATE: 6/27/05	EJT (5/19/05	
					SUB-	
CONSULTING CAPITAL COSTS	<u></u>				TOTAL	
Consulting Hydrogeologic Evaluation, Engineering Design, Syst	em Installatio	n Oversigh	nt, Final Sys	stem Documentation	\$450,000	
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$450,000	
30% Estimating Contingency					\$135,000	
TOTAL, CONSULTING CAPITAL COSTS					\$590,000	
	QUANTITY	UNIT	UNIT	ITEM	SUB-	
CONSTRUCTION CAPITAL COSTS			COST	COST	TOTAL	
Construction					\$3,802,400	
Mob./Demob.	1	LS	\$25,000	\$25,000		
Site Facilities & Maintenance (Erosion Controls)	1	LS	\$8,000	\$8,000		
Site Vegetation Clearing (22 acres)	22	ACRES	\$1,000	\$22,000		
Regrade Stockpiled Ash to Fill Depressions	50,500	CY	\$2.00	\$101,000		
Place Beneficial Reuse Ash for Protective Layer	20,000	CY	\$4.00	\$80,000		
Place Rooting Zone to Complete Protective Layer	85,400	CY	\$8.40	\$717,400		
Clay - Purchased, Delivered and Installed (3.0')	105,400	CY	\$16.50	\$1,739,100		
Place General Fill to Construct Grade	120,700	CY	\$8.40	\$1,013,900		
Grain Size Analysis/Geotechnical Testing	1	LS	\$15,000	\$15,000		
Site Drainage	22	ACRES	\$2,000	\$44,000		
Documentation Surveying	1	LS	\$15,000	\$15,000		
Revegetation (mulch, seed, fertilizer)	22	ACRES	\$1,000	\$22,000		
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$3,802,400	
					\$1,140,700	
30% Estimating Contingency					\$1,140,700	

#### **TOTAL CAPITAL COSTS**

\$5,500,000

#### ASSUMPTIONS

1. Total area of Pond D for final cover estimated at 966,000 SF, approximately 22 acres.

2. Compacted Clay cover consists of: 3 foot Compacted Clay Layer - 3 foot Protective Soil Layer.

3. All estimated final cover alternative material quantities are provided in Table 3-3.

4. Earthwork quantities based on a 1.6 ton : 1 cubic yard (CY) ratio; all earthwork quantities are approximate and need to be field verified during design.

5. Above costs based on numbers discussed during 6-15-01 meeting including: \$4.00/ton to haul clean fill on-site.

6. Additional sources of estimated costs: previous final cover construction, RS Means Site Work & Landscape Cost Data.

Leachate Management and Final Cover Alternatives R	eport			NRT PROJECT NO.: 13	375/6.1
Hutsonville Ash Management Facility - Unlined Ash I	mpoundment	(Pond D) (	Closure	BY: CAR CH	KD BY: BRH
Ameren Energy Generating - Hutsonville, Illinois	-			DATE: 6/27/05	EJT (5/19/05
					SUB
CONSULTING CAPITAL COSTS			• • • • • • • • • • • • • • • • • • •		TOTAL
Consulting					
Hydrogeologic Evaluation, Engineering Design, Syst	em Installatio	n Oversigl	nt, Final Sys	tem Documentation	\$250,000
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$250,000
30% Estimating Contingency					\$75,000
TOTAL, CONSULTING CAPITAL COSTS					\$330,000
	QUANTITY	UNIT	UNIT	ITEM	SUB
CONSTRUCTION CAPITAL COSTS			COST	COST	TOTAL
Construction					\$3,001,900
Mob./Demob.	1	LS	\$25,000	\$25,000	
Site Facilities & Maintenance (Erosion Controls)	1	LS	\$8,000	\$8,000	
Site Vegetation Clearing (22 acres)	22	ACRES	\$1,000	\$22,000	
Regrade Stockpiled Ash to Fill Depressions	50,500	CY	\$2.00	\$101,000	
Place Drainage Layer (6" Clean Sand)	17,600	CY	\$12.00	\$211,200	
Place Rooting Zone for Protective Layer	87,800	CY	\$8.40	\$737,500	
Place Beneficial Reuse Ash to Make Grade	20,000	CY	\$4.00	\$80,000	
Place General Fill to Construct Grade	206,100	СҮ	\$8.40	\$1,731,200	
Grain Size Analysis/Geotechnical Testing	1	LS	\$5,000	\$5,000	
Site Drainage	22	ACRES	\$2,000	\$44,000	
Documentation Surveying	1	LS	\$15,000	\$15,000	
Revegetation (mulch, seed, fertilizer)	22	ACRES	\$1,000	\$22,000	
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$3,001,900
30% Estimating Contingency					\$900,600
TOTAL, CONSTRUCTION CAPITAL COSTS					\$3,900,000
TOTAL CAPITAL COSTS					\$4,200,000

# TOTAL CAPITAL COSTS

#### ASSUMPTIONS

1. Total area of Pond D for final cover estimated at 966,000 SF, approximately 22 acres.

2. Earthen Cover Consists of: 6" Sand Drainage Layer (Capillary Barrier) - 2.5 foot Protective Soil Layer.

3. All estimated final cover alternative material quantities are provided in Table 3-3.

4. Earthwork quantities based on a 1.6 ton : 1 cubic yard (CY) ratio; all earthwork quantities are approximate and need to be field verified during design.

5. Above costs based on numbers discussed during 6-15-01 meeting including: \$4.00/ton to haul clean fill on-site.

6. Additional sources of estimated costs: previous final cover construction, RS Means Site Work & Landscape Cost Data.

FINAL COVER ALTERNATIVE: Pozzolanic Fly	Ash Final Co	ver (Initia	al Estimate)	1	
Leachate Management and Final Cover Alternatives R				NRT PROJECT NO .:	1375/6.1
Hutsonville Ash Management Facility - Unlined Ash In	mpoundment (	(Pond D) (	Closure	BY: CAR C	HKD BY: BRH
Ameren Energy Generating - Hutsonville, Illinois	-			DATE: 6/27/05	EJT (5/19/05)
CONSULTING CAPITAL COSTS					SUB- TOTAL
CONSOLITING CAPITAL COSTS			· · · ·		IUIAL
Consulting					
Hydrogeologic Evaluation, Engineering Design, Syst	em Installatio	n Oversigl	nt, Final Sys	tem Documentation	\$500,000
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$500,000
30% Estimating Contingency					\$150,000
TOTAL, CONSULTING CAPITAL COSTS					\$650,000
	QUANTITY	UNIT	UNIT	ITEM	SUB-
CONSTRUCTION CAPITAL COSTS			COST	COST	TOTAL
Construction					\$3,038,800
Mob./Demob. ⁷	1	LS	\$150,000	\$150,000	
Site Facilities & Maintenance (Erosion Controls)	1	LS	\$8,000	\$8,000	
Site Vegetation Clearing (22 acres)	22	ACRES	\$1,000	\$22,000	
Regrade Stockpiled Ash to Fill Depressions	50,500	CY	\$2.00	\$101,000	
Excavate Ash From Pond A for Pozzolanic Mix ⁷	102,900	СҮ	\$3.10	\$319,000	
Load and Ash Haul to Processing Plant ⁷	102,900	СҮ	\$1.85	\$190,400	
Blend Ash w/ Reagents to Form Pozzolanic Mix ⁷	105,400	CY	\$5,50	\$579,700	
Place 3.0' Pozzolanic Ash Final Cover ⁷	105,400	CY	\$2.85	\$300,400	
Place Beneficial Reuse Ash for Protective Layer	20,000	CY	\$4.00	\$80,000	
Place Rooting Zone to Compete Protective Layer	85,400	СҮ	\$8.40	\$717,400	
Place Fly Ash From Pond A to Make Grade	120,700	CY	\$3.81	\$459,900	
Grain Size Analysis/Geotechnical Testing	1	LS	\$30,000	\$30,000	
Site Drainage	22	ACRES	\$2,000	\$44,000	
Documentation Surveying	1	LS	\$15,000	\$15,000	
Revegetation (mulch, seed, fertilizer)	22	ACRES	\$1,000	\$22,000	
SUBTOTAL, CONSTRUCTION CAPITAL COSTS					\$3,038,800
30% Estimating Contingency					\$911,600
TOTAL, CONSTRUCTION CAPITAL COSTS				· · · · · · · · · · · · · · · · · · ·	\$4,000,000
TOTAL CAPITAL COSTS			· ····		\$4,700,000

#### ASSUMPTIONS

1. Total area of Pond D for final cover estimated at 966,000 SF, approximately 22 acres.

2. Pozzolanic flyash cover consists of: 3 foot Pozzolanic Flyash Layer - 3 foot Protective Soil Layer.

3. All estimated final cover alternative material quantities are provided in Table 3-3.

4. Earthwork quantities based on a 1.6 ton : 1 cubic yard (CY) ratio; all earthwork quantities are approximate and need to be field verified during design.

5. Above costs based on numbers discussed during 6-15-01 meeting including: \$4.00/ton to haul clean fill on-site.

6. 102,900 yd³ of ash excavated from Pond A.

7. Costs for the pozzolanic flyash cover construction partially based on rough estimates provided by VFL Technology Corporation - Pre-Bench Study.

8. Additional sources of estimated costs: previous final cover construction, RS Means Site Work & Landscape Cost Data.

٦

### **APPENDIX C**

### TREATABILITY STUDY FOR A POZZOLANIC FINAL COVER SYSTEM

ł.

### **APPENDIX C-2**

## **VFL COST DATA**

Т

E	lec	t	0	ņ	c	F	Ъ,	99 1	9	928	690	c	e.	S,	e	Ę,	6	le	246	ê	•	6	60	C	468	A N	μç	ĝ	Sec.	11	I <b>, 2</b> (
	lec		Total	Reagent C	•		\$1,218	\$602,756		\$132,928	\$255,620		\$284,7 <b>@</b> 8	\$536,262		\$1,119,302	\$587,9		\$935,248	\$1,577,180		\$750	\$1,193,606		\$788,468	\$1,364,2		\$1,008,422	\$1,403,3		
required			Additive	Cost per	YD3		\$12.12	\$6.00		\$1.32	\$2.54		\$2.83	\$5.34		\$11.14	\$5.85		\$9.31	\$15.70		\$7.47	\$11.88		\$7.85	\$13.58		\$10.04	\$13.97		
yards	•		Scrubber	Tons			0	0		0	0		0	0		0	0		0	0		0	0		45736	45985		46473	45741		
100480	5% Grade	3 Cap	Soil	Tons			0	0		0	0		0	0		0	0		23237	23888		22524	23013		0	0		0	0		
	<b>5</b> ,		Reagent	Tons			12824	6345		18990	36528		11864	22344		11782	6189		8149	16602		7899	12565		5892	11941		8169	12365		
			Total	Reagent Cost	,		\$1,827,443	\$904 148		\$199,392	\$383,547		\$427,100	\$804,393		\$1,678,953	\$881,893		\$1,402,872	\$2,365,769		\$1,125,649	\$1,790,502		\$1,182,687	\$2,046,433		\$1,512,634	\$2,105,092		
equired			Additive		YD3		\$12.12	\$6.00		\$1.32	\$2.54		\$2.83	\$5.34		\$11.14	\$5.85		\$9.31	\$15.70		\$7.47	\$11.88		\$7.85	\$13.58		\$10.04	\$13.97		
yards required	Ø)		Scrubber	Tons			0	0		0	0		0	0		0	0		0	0		0	0		68605	68977		69710	68611		
150720	5% Grade	4.5' Cap	Soll	Tons			0	0		0	0		0	0		0	0		34855	35831		33787	34519		0	0		0	0	6400	95 95
	ي س		Reagent	Tons			19236	9517		28485	54792		17796	33516		17673	9283		12224	24903		11849	18847		8839	17911		12254	18548		
			Mix	Density	(Tlyd3)		1.57	1.57		1.53	1.45		1.44	1.32		1.45	1.53		1.54	1.58		1.49	1.53		1.52	1.53		1.54	1.52	Doctor	Cement Ime
				ργ	(lbs/ft ³ )		94.5	93.5		93.3	89.8		87.5	82.4		86.9	91.2		95.4	97.9		92.4	92.6		86.9	88.0		91.2	91.2		
			s Density	Wet	(ibs/ft²)		116.0	116.5		113.4	107.5		_	97.7			113.4		_	117.4		110.7	113.1	_	112.4	113.0		114.2	112.4		
	XIN		Solids	e Initial	(%)		81.5	80.3		82.3	83.5		82.2	84.3			80.5		83.5	83.4	-	_	81.9		77.3	6.77	_	79.9	81.1		
75	DOF			R Q-lime	VI) (Näss.)								0	0		10.0	5.0				_	6.3	00	_		_		6.6	10.0		
NER	YAR			sh FBR	(MDM) (voi				_	0	0		10.0	20.0		_		_	_		_	-				_		_	_	A61	·íou
VEN E	r PER			ent C Ash	rge) (Newton)		0	_	_	15.0	30.0	_	_		_	_		_	е С	5		_	_	+	_	0		_	_	ch /Ain At	
MERI	cos		Mix Design %*	ge² Cen	(U) (Latarge)		10.0	5.0					_				_		6.3	12.5		_	_	_	5.0	10.0	-	_	_	e potoco	utes. linders.
WER, A	AGENT		Mix D	FGD Sludge ² Cement	(Hoosler Energy)															_					8	8		8	ສ	omnosite of de	erage of 2 cyl
HUTSONVILLE POWER, AMERNEN ENERGY	CONCEPTUAL REAGENT COST PER YARD OF MIX			Soll ³	(Black Sand)		0	0		0	0		0	0		0	0		15	15 -		15	15							All mives redurined on commette of decented sets (Als - A1 - A6)	Stockpile time for all mixes was 30 minutes.
INNOS	CEPTL			Fly Ash	(Comp 1-6)		10	100		9 8	5		5	<del>1</del> 8		5	9 8		85	85		85	85		20	2		2	2	All mixes re	Stockpile ti
HUTS	CON		Mix	Number	-		-	2		ო	4		5	9		~	8		6	10		=	12		13	14		15	16	Note:	

<mark>\$/ton</mark> 95 95	- 54 24
<mark>Reagent</mark> Cement Lime Soil	Scrubber Sludge -est FBR Class C Ash

2008--AS 09-1, Exhibit 3

### **APPENDIX C-1**

### CONCEPTUAL DEVEOPMENT OF POZZOLANIC CAP FOR CLOSURE OF BASIN D AT THE HUTSONVILLE POWER STATION

e.

Conceptual Development Of a Pozzolanic Cap For the Closure of Basin D at the Hutsonville Power Station

VFL Technology Corp. 16 Hagerty Boulevard West Chester, Pennsylvania 19382 (610) 918-1100 - PHONE (610) 918-7222 - FAX REPOR

# GONCEPTUAL DEVELOPMENT OF A POZZOLANIC CAP FOR CLOSURE OF BASIN D AT THE HUTSONVILLE POWER STATION HUTSONVILLE, IL

Prepared for: Natural Resource Technology 23713 W. Paul Road Pewaukee, WI 53072

Prepared by:

VIAL Treehnology Corporation 16 Pagenty Boulevard West Chester, PA 19382

(610) 918-1100

March 25, 2003

### **TABLE OF CONTENTS**

#### BACKGROUND

#### 2 OVERALL PROGRAM CONCLUSIONS

#### GEOTECHNICAL INVESTIGATION

#### TREATABILITY STUDY

#### 4.1 RAW MATERIALS CHARACTERIZAION

- 4.2 **REAGENTS**
- 4.3 MIX DESIGN PREPARATION
- 4.4 MIX DESIGN PERFORMANCE TESTING

#### 5 EXRAPOLATION TO FULL-SCALE OPERATIONS

#### APPENDIX

1

3

4

VFL Technology Corporation Hutsonville Power Station C-1703-02



### **Final Report**

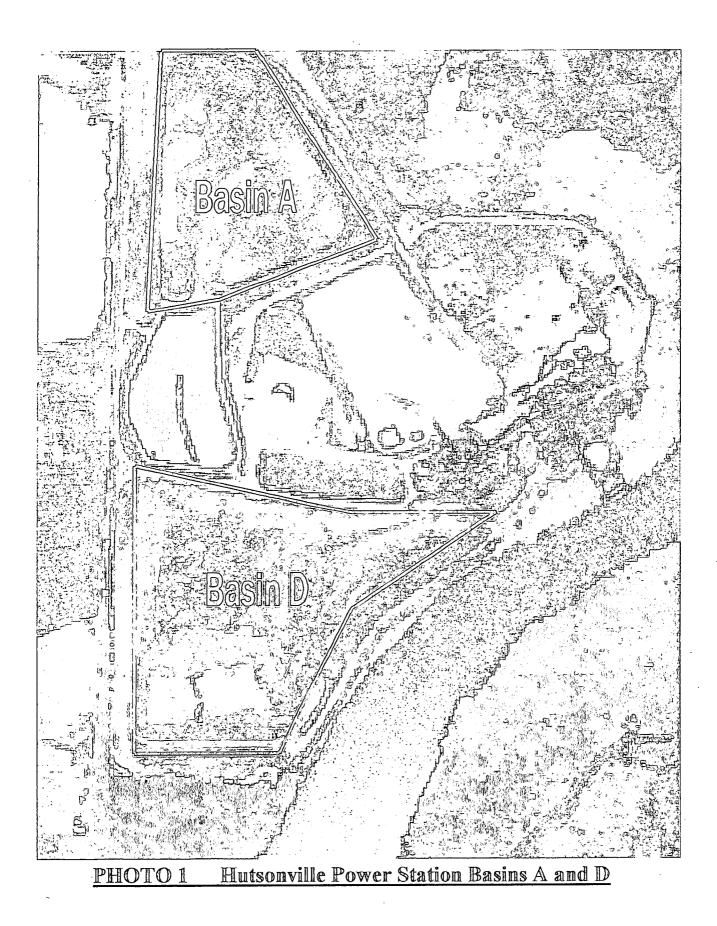
### Conceptual Development of a Pozzolanic Cap for the Closure of Basin D at the Hutsonville Power Station

#### 1.0 Background

Basin D at the Hutsonville Power Station (Photo #1) is an inactive ash disposal area that will be closed under Illinois Title 35 Part 811. Natural Resource Technology (NRT), Pewaukee, Wisconsin, contracted the services of VFL Technology Corp. (VFL) to determine the feasibility of developing a concept for the creation, manufacture, and placement of a pozzolanic cap for Basin D.

The purpose of this report is to present a final summary of the information, findings and test results that have been generated for the conceptual development of the pozzolanic cap for the closure of Basin D at the Hutsonville Power Station in Hutsonville Illinois.

The Program Goals of this study were to:


- Attempt to develop a pozzolanic cap material that would achieve a permeability of 1 x 10⁻⁷ cm/sec, have an unconfined compressive strength of approximately 150 psi, and have minimal cracking after placement.
- Develop a pozzolanic material that is environmentally acceptable and minimizes leaching.
- If the  $1 \times 10^{-7}$  cm/sec permeability goal is unrealistic or unachievable with these materials, estimate the most realistic performance of these materials under field conditions.
- Produce a cost-effective pozzolanic cap material that can be easily handled and placed with common earth moving equipment.

To accomplish these goals, VFL and NRT developed a scope of work for the project. VFL employed the help of GeoSystems Consultants Inc. (GeoSystems) to assist with the geotechnical engineering portion of the program. The scope of work basically included:

- A field assessment of the site (VFL and GeoSystems);
- A review of existing geotechnical data of the site to determine if additional information is needed to finalize the cap design and construction (GeoSystems).

VFL Technology Corporation Hutsonville Power Station C-1703-02





- Collect samples of the Basin materials (VFL);
- Conduct a treatability study to determine if a pozzolanic cap can be developed to meet the current design guidelines for closure cap construction and develop an operational approach to construct the cap (VFL); and
- Conceptual development of the basic cap design, appearance and estimated volumes of material to be used in the cap construction (GeoSystems).

On March 5 and 6, 2002, representatives of VFL and GeoSystems visited the Hutsonville site. Samples from basins A and D were collected, and existing geotechnical data was reviewed. The Hutsonville ash samples were tested at VFL's Corporate laboratory in West Chester Pa. using a variety of locally available stabilization reagents.

#### 2.0 Overall Program Conclusions

- The preliminary geotechnical evaluation indicates that the construction of a pozzolanic cap is feasible; however, some additional, more refined analyses are needed to finalize the engineering and design of the cap system.
- The results of the Treatability Study program show that it is feasible to construct a structurally stable, environmentally acceptable Pozzolanic Cap and use this cap in the final closure of Basin D at the Huntsville Power Station. Although the permeability results do not meet the original goal of 1 x 10⁻⁷ cm/sec, the results of several mixes are in the mid to low 10⁻⁷ cm/sec range.
- By using Basin A ash as a construction material for the pozzolanic cap, approximately 160,000 yds³ of ash can be utilized; 100,000yd³ as a pozzolanic final cover and 60,000yd³ to adjust the Basin A final slopes.
- All of the mixes that were considered potential candidates for cap construction easily met the unconfined compressive strength goal of 150 psi.

#### 3.0 Geotechnical Investigation

As indicated above, the geotechnical data review, conceptual design, material volume estimates, preliminary settlement and slope stability analyses were conducted by GeoSystems. The report of their findings and analyses has been included in Appendix 1 of this report.

In summary, GeoSystems believes the construction of a pozzolanic cap is feasible and will be an effective system.

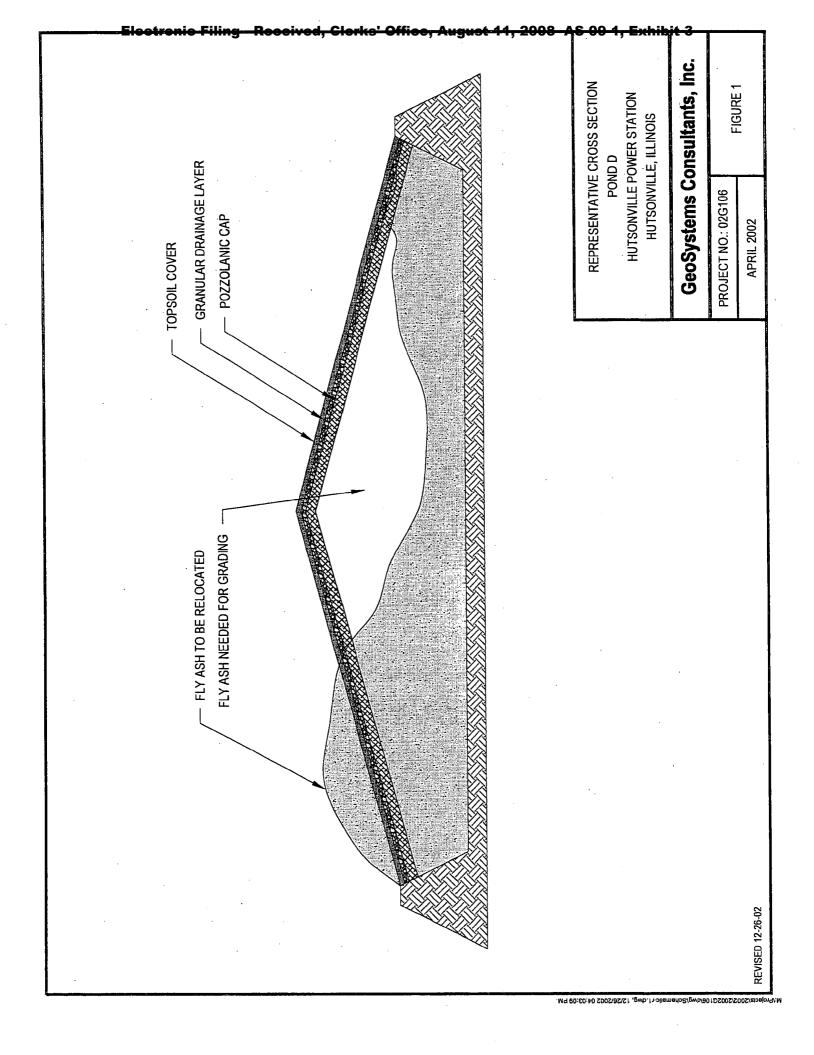


An overview of the conclusions of the GeoSystems report indicate:

- .... A parametric analysis varying cap permeability from 1 x 10⁻⁵ cm/sec to 1 x 10⁻⁷ cm/sec yielded "effectiveness" ranging from 78% to 97%......
- .....As the slope of the final cover increases from 1% to 5%, the volume of regrading reduces from 110,000yds³ to 75,000 yds³ .....
- .....With a 5% slope, the volume of ash fill material needed from Basin A is estimated to be 160,000 yds³ .....
- .....The volume of the pozzolanic cap (3 feet thick) is estimated to be 100,000 yds³ and varies little as the slope varies from 1% to 5%......

A graphical presentation of a conceptual, representative cross section of Basin D showing the cap design, regrading requirements, needed fly ash fill material from Basin A, etc. was developed by GeoSystems (part of GeoSystems report - see Appendix 1) and has been included here as Figure 1 for reference purposes.

#### 4.0 Treatability Study


A few "Performance Goals" were established for the final pozzolanic cap material. The intent was to see if the stabilized materials could meet the existing cap design specifications, and if not, determine how well they performed against these existing specifications. The "Performance Goals" for this project were to:

- Develop a permeability of 1 x 10⁻⁷ cm/sec, or determine how close the stabilized materials can realistically come to these specifications.
- Develop approximately 150 psi unconfined compressive strength;
- Attempt to develop a cost-effective mix design that can be easily implemented and constructed in the field;
- Minimize cracking; and
- Develop a cap system that was environmentally acceptable (minimizes leaching).

VFL's treatability study can be broken down into four basic areas: Raw Materials Characterization; Reagents; Mix Design Development and Mix Design Performance Testing. Each of these areas is discussed further in the following sections of this report.

VFL Technology Corporation Hutsonville Power Station C-1703-02





#### 4.1 Raw Materials Characterization

During the site visit, VFL collected six (6) samples of sluiced ash from different locations in Basin A, and two (2) samples of ash from different locations in Basin D. The six samples from Basin A and two samples from Basin D were individually tested for moisture content, pH, density and Loss on Ignition (LOI).

The solids content of the ash excavated from Basin A ranged from 71.4% to 74.2% solids (40.0% to 34.8% moisture – on a dry weight basis or dwb). The dry weight basis refers to the test that uses the dry weight of the sample in the calculation. Please see the further explanation in this section. The pH values for Basin A ranged from 8.4 to 11.0, while the LOI's for Basin A ranged from 2.1% to 8.9%. All ash samples showed varying degrees of bleeding (draining of free liquids from the material).

As indicated previously, the intent is to use material from Basin A to produce the pozzolanic cap for the closure of Basin D. In order to simulate full-scale operations, the "as received" samples of ash from Basin A were allowed to decant/drain. This was done to estimate the handling and solids content characteristics of the ash that will be used in the full-scale operations. The data showed that some of the ash samples decanted/drained nicely, while others did not decant/drain as well. The decanted/drained solids content of the Basin A materials ranged from 73.9% to 81% solids (35.3% to 23.5%moisture – dwb), or a 11.8% to 32.5% decrease in moisture content.

At this point a more thorough explanation of solids content and moisture content is required. The calculations are:

Solids Content % = <u>Dry Weight of Sample</u> x 100 Wet Weight of Sample

#### Moisture Content % (dwb) = <u>Weight of Water in the Sample</u> x 100 Dry Weight of Sample

As shown, both calculations are sometimes needed to explain what is happening with certain materials. We have provided both sets of numbers at various points in this text. Generally moisture content is referred to when describing soils. Solids content is required for our purposes when describing mixtures of materials that may not all be soils. The two systems developed independently based on the type of work taking place. In summary, moisture content is generally soil based and solids content is mixed material based.

The two samples of ash collected from Basin D showed a solids content range



of 72.9% to 82.6% solids (37.2% to 21.1% moisture – dwb). The sample that showed the high solids content was taken from a stockpile of material that was sitting on the Basin (age unknown). The pH's for the two samples collected from Basin D were 8.8 and 8.2 respectively. The results of the physical analysis of the ash samples can be found on Table 1.

# TABLE 1Physical Characterization of the Hutsonville Ash

Basin #	Sample Number	ID.	рН	Solids	ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL	Ignition	#100	#200	#325	Rodded	(Wet/Dry) Compacted
			*(SU) -	(%)	(%)	1.4.4. <b>%</b>		% Passing	1994 - Maria	<u>1DS/π</u>	1bs/ft ³
Α	A-1	#1, Inflow	10.4	72.7	80.8	3.1	95.9	83.8	64.1		
Α	A-2	#2 Inflow +1	9.6	74.2	80.8	2.1					
Α	A-3	#3 Inflow +2	11.0	72.2	81.0	4.5	90.4	78.0	63.1		
Α	A-4	#4 Inflow +3	11.0	71.4	79.3	2.6					
Α	A-5	#5 Inflow +4	8.6	72.3	78.2	2.5					
Α	A-6	#6 Outfall	8.4	72.5	73.9	8.9	93.0	79.5	66.0		
A	A-7	Composite A1-A6	10.0	NA	79.6	·	95.9	85.6	71.4	87.6 / 69.7	115.2 / 91.7
D	D-1	Basin D	8.8	72.9		5.2					
D	D-2	56K Stkpl.	8.2	82.6	NA	4.0					
L			L		L		<u> </u>		11 da	<u>L</u>	

In addition to the physical characterization of the ash samples listed above, an elemental analysis and TCLP leachate analysis for the 8 RCRA metals was run on a composite sample of the Hutsonville ash. The composite sample was generated by combining equal portions of ash samples A-1 through A-6. The results of the chemical analyses are listed in Table 2. The actual data reports from Dalare Labs in Philadelphia, Pa. have been included in Appendix A-2.

VFL Technology Corporation Hutsonville Power Station C-1703-02



PARAMETER	METALS	Ash Composite ANALYSIS LEACHABLE
Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	34.4 95.0 < 1.0 24.3 55.6 0.076 18.3 < 1.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

TABLE 2Elemental and TCLP Analysis of the Hutsonville Ash

Notes: Total = Total Elemental Concentration in mg/kg
Leachable = TCLP Leachable Metals in mg/L
< = Less than

#### 4.2 Reagents

VFL has used numerous reagents in the development of pozzolanic construction materials. VFL reviewed these various reagents and based on previous full-scale experience with similar projects, selected what it believes to be the best performing, commercially available (in large quantities), and most cost-effective reagents for this project, from sources in the vicinity of the job site. These reagents include:

- Portland Cement;
- Class C Fly Ash (self-setting type);
- Fluidized Bed Residue Ash;
- Quicklime;
- FGD Scrubber Sludge (used to make the particle size of the mix design finer, which improves permeability); and
- Native Soils (used to make the particle size of the mix design finer, which improves permeability).

VFL experienced a few minor delays in the treatability study portion of the project. These delays are directly attributed to the delays in receiving some of the samples of reagents from the various vendors. One of the most problematic was the FGD Scrubber Sludge, which was finally received on date 06/06/02.



#### 4.3 Mix Design Preparation

In order to simulate full-scale conditions, VFL combined the six (6) decanted/drained samples of ash from Basin A into one (1) composite ash sample that was used to prepare all of the mixes. The solids content of this composite sample was approximately 79% solids (26.6% moisture – dwb).

All mix designs were prepared in a laboratory mixer and mixed to the consistency expected to be achieved using full-scale processing equipment. All mix designs were damp, granular, soil-like materials that could be easily handled and placed with common earth moving equipment. All of the mixes were prepared on the "wet side of optimum moisture" to assure that there was enough moisture in the mix for reagent hydration and proper compaction. This "wet side of optimum moisture" consistency also minimizes the potential for dusting during full-scale operations. After blending, the mixes were allowed to rest and cure for one hour prior to compaction in the test cylinder molds. This was done to simulate the approximate amount of time the mixed material would need to be moved from the mixing plant spread and compacted. See Table 2 for the mix designs developed in this project.

Solids contents, as well as wet and dry compacted densities were recorded for all mixes. These values will be used as operating specifications during full-scale production and placement operations.

All mixes were compacted into standard size compaction molds, labeled, and stored in sealed plastic bags to insure proper curing and prevent moisture loss during their curing cycle.

#### 4.4 Mix Design Performance Testing

Immediately after mix preparation, all of the mixes were evaluated for consistency, handlability, and constructability. As previously mentioned, all of the mixes had a damp, granular, soil-like consistency. All mixes could be easily handled, transported and placed with common earth moving equipment. All of the mixes could support heavy equipment traffic immediately after placement and compaction. This means that multiple lifts of stabilized material could be sequentially placed on top of each other throughout the day during full-scale operations.

As proposed, all of the mixes were tested for unconfined compressive strength (UCS) in accordance with ASTM C - 39. All compressive strength



cylinders were tested in duplicate and capped prior to UCS testing. The mix designs and UCS test results can be found in Table 3.

Overall, the mixes generally performed as expected, with the exception of the quicklime mixes. All mixes showed good solids contents as well as wet and dry compacted densities. Based on the mix densities, costs, UCS results, etc, the best performing mixes were selected for the next phase of permeability testing. These mixes were:

Mix 1 – 10% cement Mix 2 – 5% cement Mix 5 – 5% fluidized bed residue Mix 9 – 6.3% cement + 15% native soils Mix 14 – 30% FGD Filtercake + 10% cement Mix 16 - 30% FGD Filtercake + 10% quicklime

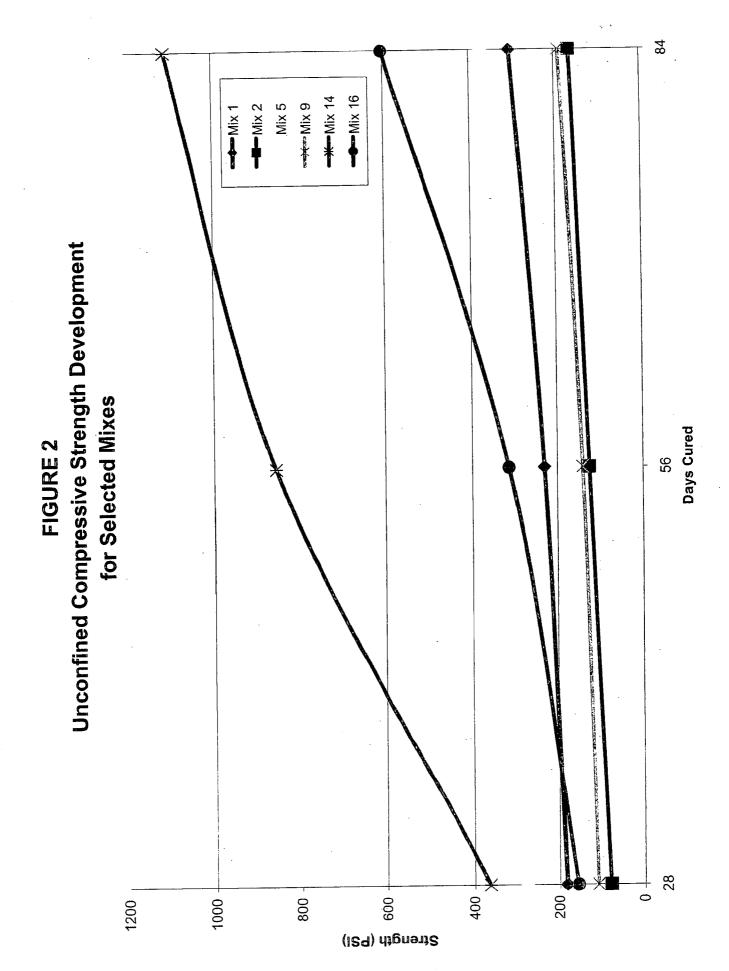
Triaxial permeability tests were run on the above listed mixes after 28 and 84 days of curing. The results of these tests are listed in Table 3. During the 84 day permeability testing, a problem was discovered in the test results. All of the test specimens showed higher (more permeable) values than the 28 day results. In some cases, it was over an order of magnitude. This data trend is <u>extremely</u> unusual for pozzolanic reaction mechanisms, which are known to improve with time. It was concluded that the entire set of cylinders must have been damaged during transport and handling. Companion cylinders were tested again after curing 84 days and these permeability values fell in the expected range.

The only mix that did not show the normal permeability improvement characteristics was Mix #16. All of the indicator parameters for this Mix looked promising (consistency, compaction characteristics, densities, strength development, etc.), yet the permeability data did not follow the usual trends.

At this point, the mixes prepared in this program are considered to be excellent indicator mixes to examine the feasibility of the program and provide data to determine the basis for a final mix design. Further refinement of the mix design can be assessed to improve performance, permeability, and cost-effectiveness of the pozzolanic cap material as necessary.

After reviewing all of the permeability data listed in Table 3, it appears that the realistic performance range for these types of pozzolanic materials is the low  $10^{-6}$  cm/sec to the mid $\rightarrow$ low  $10^{-7}$  cm/sec range for materials to be produced under full-scale field conditions. The typical 1 x  $10^{-7}$  cm/sec liner spec means that the material must be in the  $10^{-8}$  cm/sec range so as not to exceed the 1 x  $10^{-7}$  cm/sec spec under field conditions. These types of values are extremely difficult to meet with most materials under field conditions.




TREATABILITY STUDY SUMMARY SHEET

20 - (cm/sec)	84 day		7.64E-07	4.74E-06	-			5.84E-06					1.30E-06					1.38E-07		2.91E-05	is to ash.
Permeability K20 - (cm/sec)	28 day		5.37E-07	5.03E-06				 1.75E-06					1.99E-06					1.22E-07		4.32E-05	 ² FGD sludge added on a wet weight basis to ash. ⁴ Reagents added on a dry weight basis e at 56-day cures.
California (California)	84 day	(ISd)	305	165		37	114	372	609	138	82		191	380	 48	82	164	1110	304	603	ge added o s added on cures.
UCS	56 day	(ISI)	231	125		41	124	276	583	70	27		142	416	42	84	168	856	194	314	JCS strength data is average of 2 cylinders. ² FGD studge add Soil added on a wet weight basis. Second set of permeability results for mixes 14 and 16 are at 56-day cures.
	28 day	(ISJ)	184	79		31	81	277	291	38	22		110	320	26	35	123	364	130	157	and 16 ar
sity 🖉	_ Dry	(Ibs/ft ³ )	94.5	93.5		93.3	89.8	87.5	82.4	86.9	91.2		95.4	97.9	92.4	92.6	86.9	88.0	91.2	91.2	rders. mixes 14
🔬 Density 🖉	Wet	(lbs/ft ³ )	116.0	116.5		113.4	107.5	106.4	97.7	107.1	113.4		114.2	117.4	110.7	113.1	112.4	113.0	114.2	112.4	¹ UCS strength data is average of 2 cylinders. ³ Soil added on a wet weight basis. ⁵ Second set of permeability results for mixe.
<ul> <li>Hq </li> </ul>		(ns)	11.9	11.7		10.9	11.4	12.3	12.5	12.5	12.3		11.7	11.9	12.4	12.6	 11.6	12.0	12.8	12.9	JCS strength data is average of 2 Soil added on a wet weight basis. Second set of permeability results
Solids		(%)	81.5	80.3	1	82.3	83.5	82.2	84.3	81.1	80.5		83.5	83.4	83.5	81.9	77.3	6.77	6.67	81.1	ength deta ded on a v I set of per
and the second second	Q-lime									10.0	5.0				6.3	10.0			6.6	10.0	¹ UCS str ³ Soil ad
Reagents ⁴	FBR	(MOA)						10.0	20.0			-									
1.19		(Newton)				15.0	30.0														blend.
	Cement	(Lafarge)	10.0	5.0									6.3	12.5			5.0	10.0			soil-fly ash
19 - A - A - A - A - A - A - A - A - A -	Soil ³	(Black Sand)	0.	0		0	0	0	0	0	0		15	15	15	15					ght basis to to vas 30 minute:
🔅 Mix Design %	Filter Cake ²																30	30	30	30	Reagent added on a dry weight basis to to soil-fly ash blend. Stockpile Time for all mixes was 30 minutes
N SSC 198	FIV	(Comp 1-6)	100	100		100	100	100	100	100	100		85	85	85	85	02 ·	02	20	70	Reagent adde Stockpile Time
Mix	Number		-	2		ę	4	5	9	7	œ		6	10	11	12	13	14 ⁵	15	16 ⁵	Note:

Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3

.

6/27/2003



-

Based on all of the above data, the four (4) best performing mixes in the study were then tested for leachate characteristics using the TCLP leaching procedure. The results of the TCLP leaching tests are presented in Table 4.

PARAMETER	Untreated Fly Ash	Mix #2	TREATED ASH Mix #5 Mix #9 Mix #14
Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	$\begin{array}{rrrr} 0.020\\ 0.56\\ 0.01\\ < 0.01\\ 0.12\\ < 0.001\\ 0.013\\ < 0.01\end{array}$	$< 0.010 \\ 0.28 \\ < 0.01 \\ 0.06 \\ < 0.02 \\ < 0.001 \\ 0.019 \\ < 0.01$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

TABLE 4TCLP Leachate Analysis of the Treated Ash

Notes: Treated material cured for 84 days All results expressed in ppm.unless otherwise noted. ppm = Parts per Million < = Less than

As shown in Table 4, all of the mixes showed <u>very</u> low leaching potential. One interesting trend to observe is the fact that all of the stabilized mixes reduced the leachable level of arsenic, barium and lead when compared to the original, untreated ash. This is a common trend seen in the leachate characteristics of pozzolanic stabilization matrices.

Upon reviewing all of the data generated in the study, the most promising reagents and material blends to produce a pozzolanic cap under field conditions appear to be:

- Basin A fly ash and cement (Mix 1 and 2)
- Basin A fly ash, onsite soil and cement (Mix 9 and 10)
- Basin A fly ash, FGD Filtercake and cement (Mix 14)

FBR was not included in the final selection for several reasons. FBR has been used in the past for various construction needs including permeability which is why we



have included it in this treatability study. FBR is quite useful when handled properly and used in the correct application. Recently, there have been reports on several construction projects that some FBR's are susceptible to expansion problems. Situations where it should be avoided are employing it where slight expansion is not acceptable.

FGD sludge is a good additive for most mix applications. However, FGD sludge from each power plant can be very different (chemically and physically) based on the coal source and type of boiler used. Another issue that VFL has with FGD sludge, in this specific application, is making sure that it is mixed thoroughly with the other ingredients. FGD sludge is a very sticky material. It is difficult to accurately feed it into a portable processing system because the FGD sludge has a tendency to adhere to the sides of feed hoppers that are used on portable pugmill plants (known as bridging). In most construction applications, where precise mix designs are not required, this is not a problem.

The mixes containing cement tend to be the easiest to quality control in field construction applications. Cement is a manufactured product and varies very little. Further optimization testing is recommended for the final mix design prior to fullscale operations. VFL would recommend that a test pad be constructed with fullscale equipment and sampled in substantial conformance with 35 Illinois Administrative Code (IAC) Part 816 to evaluate the proposed process equipment train and optimized the final mix design.

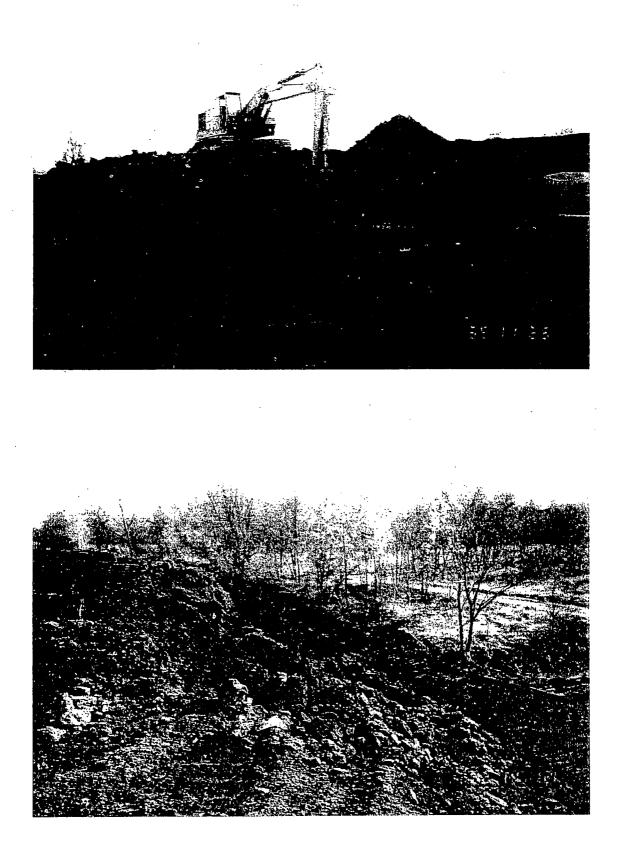
#### 5.0 Extrapolation to Full-Scale Operations

The basic full-scale operational approach that VFL would use to construct the pozzolanic cap for Basin D's closure would conform to the following schedule of events:

- Regrade Basin D to the lines and grades specified by the Engineer.
- Excavate the fly ash from Basin A and allow it to drain to the proper moisture content before using it in the mix design. Run On/Run Off to and from the area will be controlled and water drained from the ash will be routed back through the plants pond system.
- Construct a processing area in the vicinity of the two Basins. Erect the processing plant, silos and any other ancillary processing equipment needed. Construct haul roads to and from the placement area.
- Process the designated mix design.
- Place and compact the stabilized cap mix in a reasonable time frame allowing the material a curing period prior to compaction to the lines and grades established by the Engineer for the final cap design.
- Cover the placed material with the cover soils to protect the pozzolanic cap from severe weather events.

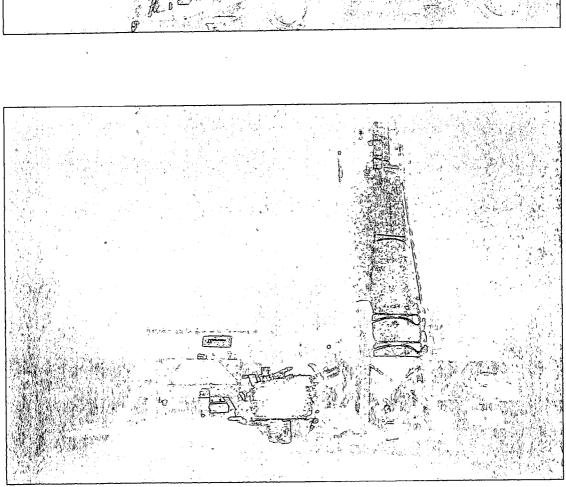


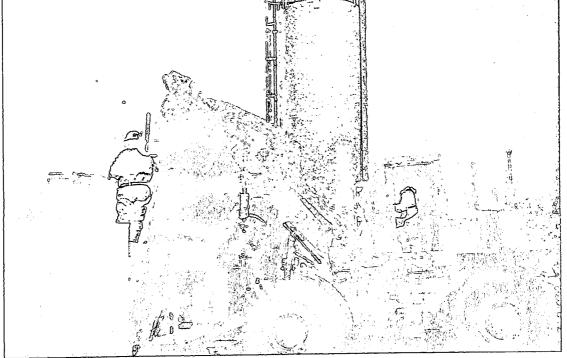
• Place the topsoil and vegetate as soon as possible.

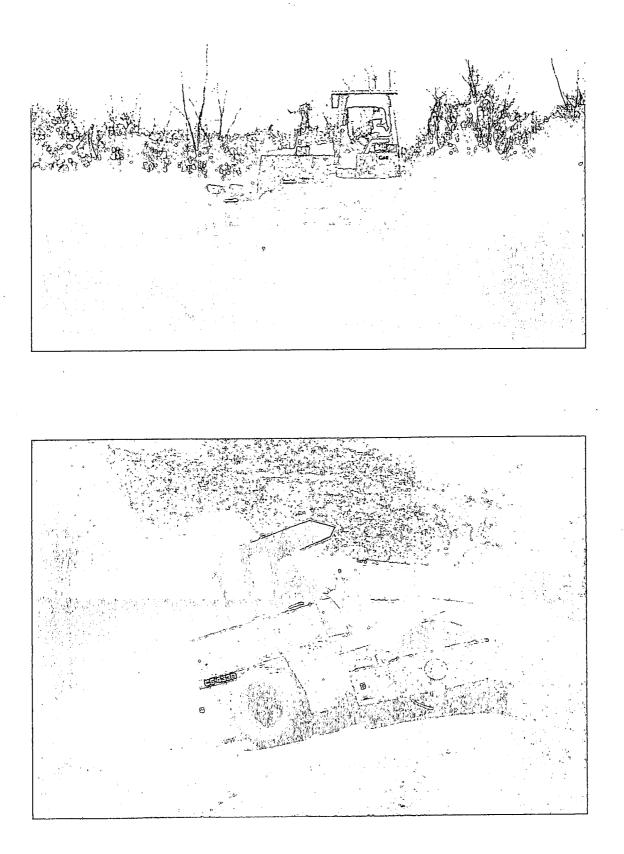

To develop the necessary documentation for submittal to the State Regulatory Agencies, the basic Quality Control program for the pozzolanic cap construction would involve:

- Quality Control conformation testing on the materials to be used in the cover system and their placement.
- Process control testing of the mix design during production in substantial conformance with 35 IAC Part 816.
- Quality Control of the cap mix design during placement and compaction in substantial conformance with QA/QC procedures outlined in 35 IAC Part 816.
- Moisture monitoring on the excavated and drained Basin A fly ash. Control and QC confirmation checks on the reagents and any other materials of construction that will be used in the mix design.
- Plant calibration.
- Insure that Basin D has been regraded to the lines and grades specified.
- Insure that the cover system has been installed to the lines and grades specified.

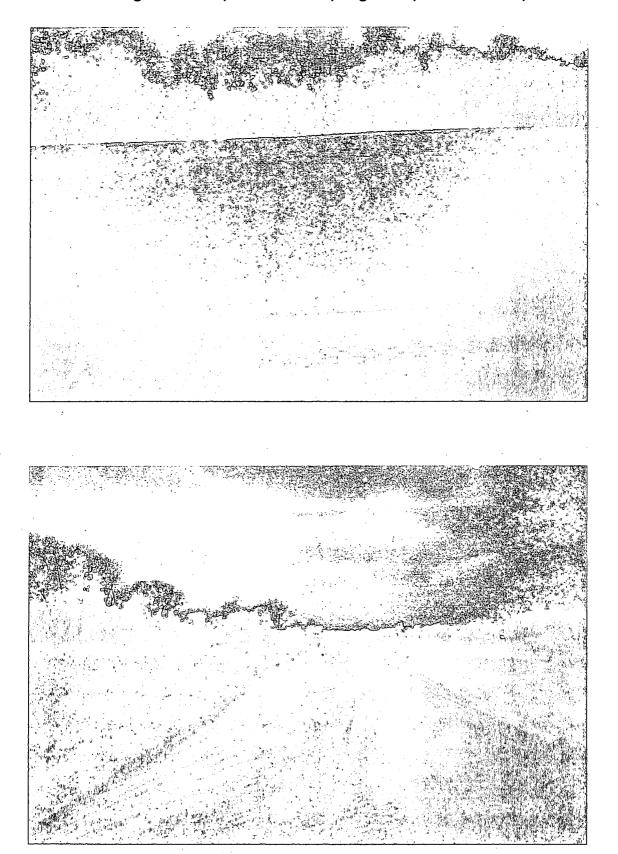
The cap construction activities listed in this section have been used by VFL on several other pozzolanic cap projects. To demonstrate this, the following photos of a pozzolanic cap system that VFL constructed on an industrial landfill in New Jersey have been included for review.


VFL Technology Corporation Hutsonville Power Station C-1703-02

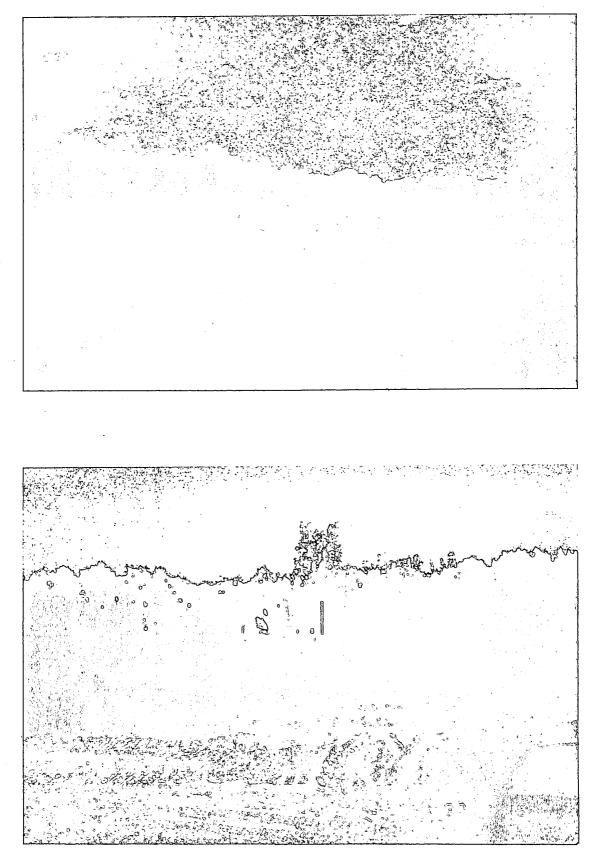



### **REGRADING LANDFILL**


### PROCESSING EQUIPMENT








### PLACEMENT AND COMPACTION OF THE POZZOLANIC CAP MATERIAL



COMPACTED AND GRADED POZZOLANIC CAP MATERIAL



PLACEMENT OF THE DRAINAGE LAYER AND TOP SOIL FOR COVER SYSTEM





FINISHED LANDFILL

# Appendix A-1

# Draft Geotechnical Report by GeoSystems Consultants Inc. Fort Washington, Pa.

VFL Technology Corporation Hutsonville Power Station C-1703-02





### GeoSystems Consultants, Inc.

514 Pennsylvania Avenue Fort Washington, PA 19034 Telephone: (215) 654-9600 Fax: (215) 643-9440

June 7, 2002 2002G106 Revised 24 December 2002

VFL Technology Corporation 16 Hagerty Boulevard West Chester, PA 19382-7594

Attention: Mr. Douglas Martin

Re: Geotechnical Evaluation Closure of the Fly ash Basins and Stockpile Hutsonville Power Station Hutsonville, IL

#### Dear Mr. Martin:

In accordance with VFL Technology Corporation's request, GeoSystems Consultants, Inc. is pleased to submit this Final Report regarding the Geotechnical aspects relating to the closure of Flyash Basin "D" (Basin "D") at the subject site. The closure will utilize conditioned and processed coal ash from Flyash Basin "A" (Basin "A") and other Stockpiled materials in Basin "D" at the Hutsonville Power Station in Hutsonville, Illinois. GeoSystems Consultants provided geotechnical engineering consultation services to the VFL team for this project. The professional services provided are presented below.

#### **PROFESSIONAL SERVICES**

Professional Services provided for this project consist of the following tasks

**Task 1: Site Walk** A Site walk was conducted on March 5 and 6, 2002, as was a site meeting with representatives of Natural Resource Technology (NRT), Inc. (Christopher A. Robb), and Steve Miller, James Alberta, & Jaquie Bush of AMEREN SERVICES Hutsonville Power Station. A Field Assessment of geotechnical conditions at Basin "D," and sampling of Basins "A" and "D" were also performed. Samples obtained were shipped to VFL's West Chester Facility. One bucket of flyash from Basin "D" was then transported to GeoSystems' Fort Washington facility.

#### Task 2: Review Readily Available Geotechnical Data

Mr. C.A. Robb of NRT submitted selected geotechnical data regarding the subsurface conditions, site drawings, and tables containing volumetric data for Basin "D." A list of these documents is included as Attachment 1. These documents were reviewed to ascertain subsurface conditions in the vicinity of Basin "D." Several inferred subsurface cross section and the associated test boring logs were evaluated. These data were then used to develop an "Idealized Cross Section" of the completed Basin closure at the location GeoSystems believes is the critical section with respect to slope stability. Soil strength characteristics were estimated based on information presented in relevant test boring logs. Where soil (strength) data was not available, GeoSystems used engineering judgment to select reasonable strength values for subsurface and embankment soils and impounded flyash.

GeoSystems also obtained and reviewed selected sections of the State of Illinois Title 35: Environmental Protection, Subtitle B (Waste Disposal Part 816, Alternative Standards for Coal Combustion Power Generating Facilities Waste Landfills), and Subtitle G (Waste Disposal Part 811, Standards for New Solid Waste Landfills).

#### Task 3: Engineering Consultation Services

GeoSystems provided Engineering Consulting Services regarding the geotechnical issues for the project. Specifically the following issues were addressed:

#### Field Investigation Program

GeoSystems identified data gaps in the geotechnical information provided with respect to performing the design evaluation. These deficiencies include insufficient laboratory data that characterizes physical and engineering properties of the impounded flyash, containment dikes, the various soil strata underlying the site, and the stratigraphy in the areas judged to be critical with respect to slope stability. It is our opinion that at least 6 additional test borings are required to develop adequate cross sections in critical areas and to obtain samples for physical and engineering property laboratory testing. These data would be used to perform analyses regarding slope stability and settlement.

#### Alternate Cap Effectiveness

Based on a review of the pertinent sections of the State of Illinois Title 35 Code, a pozzolanic barrier layer is an acceptable alternate cover system in lieu of using a goemembrane cover system. To evaluate the effectiveness of the pozzolanic cover system, the HELP computer model was used.

USEPA's computer model HELP (Hydrologic Evaluation of Landfill Performance) has been used to perform a water balance to estimate the quantity of fluid percolating through

GeoSystems Consultants, Inc.

the final cover system to the basin materials, estimate the amount of runoff, and head on the cover system barrier layer.

HELP uses a water balance method to estimate the quantity of precipitation which will theoretically penetrate the basin final cover system and percolate through the waste. Sitespecific climatological and design data can be input into the model in order to assess final cover performance.

To determine the quantity of rainfall penetrating the final cover, the model estimates runoff, cover system drainage, and evapotranspiration. These calculations are generally based on assumptions made regarding the runoff coefficient, root zone depth, quality of plant cover, soil porosity, field capacity, and initial water content. All rainwater remaining after runoff, cover system drainage, and evapotranspiration can either become leachate or can be incorporated into the waste.

The HELP model is generally accepted as a useful tool in the evaluation of cap and liner designs. To simplify the analysis of these designs, it makes several assumptions. These include steady state flow and homogeneous isotropic layers. Steady state flow may be achieved in an unknown number of years after the site has been closed and final cover installed. The non-homogeneous nature of the basin materials could result in rainwater channeling through voids, resulting in non-uniform flow. The effect of rainwater absorption by the waste or trapped rainwater remaining from active operations can be accounted for by setting the initial water content of the waste. These assumptions make the HELP model useful as a tool to compare various design options.

The information needed to run the HELP model includes climatologic, design, soil, and runoff data. To assist the user in operating the HELP model, the program can generate synthetic climatologic data for 20 years using internal databases with weather conditions for 139 cities throughout the United States (Evansville, IN was used for present study, which is about 90 miles from the site), 7 vegetation cover types, and 18 soil types. The user may select default values from these databases that best represent the expected site-specific conditions. Details of data input and modeling results (using the 20-year synthetic weather generator) are presented in Attachment 2.

HELP analyses were performed using a 6-foot thick cap section (3 feet pozzolanic cap, 3 feet cover soil: 0.5 to 1.5 feet drainage, 2.5 to 1.5 feet cover soil). Permeability of the pozzolanic cap was varied from  $1 \times 10^{-5}$  to  $1 \times 10^{-7}$  cm/sec, and final cover slopes varied from 1% to 5%.

Based on the results of the modeling, the proposed cover design for Hutsonville Flyash Basin "D" for the flat cap area would result in a range of 78 to 97 percent effectiveness in eliminating drainage through the cover system to the basin materials. These percentages are based on the average total precipitation for one year and the "percolation from base of cover" values calculated using the HELP model (see Table 1). The "percolation from base of cover" is assumed to be the amount of leachate, which is a conservative

3

assumption that ignores the potential for storage in the waste material. However, it does not account for fluid generated by the waste materials. The "percolation from base of cover" has been computed on a gallons-per-acre-per-day basis. For the Hutsonville Flyash Basin "D," percolation ranges from 90 gallons-per-acre-per-day (Case 2B) to 680 gallons-per-acre-per-day (Case 1A). The calculated results from HELP model runs indicate that the maximum head associated with the 24-hour, 25-year storm event on the barrier layer within the drainage layer is less than 6 inches. This head can be accommodated in the drainage layer and the overlying granular cover soil.

#### Potential Post-Closure Settlement

Calculations to estimate differential settlements affecting the performance of the cap elements were made using the GeoSystems Consultants' computer program SETTLE. This program calculates total settlements consisting of the sum of consolidation, elastic compression and/or secondary compression of each layer. The settlement would be mainly due to the consolidation of the flyash layer. This layer is normally consolidated and is soft. No site-specific consolidated characteristics of this layer are available. To compute settlements, data for similar materials from other sites was used. Available correlations for consolidation properties were utilized. The following properties were used in the analysis:

Unit total weight ( $\gamma_t$ ) = 90.0 pcf (flyash), 100.0 pcf (silty clay) Compression Index (C_c') = 0.17 (flyash), 1.25 (silty clay) Pore Pressure Factor (A) = 1.0 Poisson's Ratio ( $\mu$ ) = 0.35 Coefficient of Secondary Compression (C_a') = 0.005 (flyash), 0.010 (silty clay)

The 5% final cover slope was evaluated for settlement potential. Based on a reasonable expected value for Compression Index, settlement at the center of the closed Basin "D" was calculated to be about 1 foot. This estimate of settlement was based on an assumed value for the flyash Compression Index. Actual Compression Index data from laboratory testing of the Basin "D" flyash together with consolidation characteristics of the various strata underlying Basin "D" are required to perform an analysis for final submission.

#### Slope Stability Analyses

Preliminary slope Stability Analyses for the closed Hutsonville Flyash Basin "D" were performed using the strength parameters obtained from site data provided, and assumed soil properties where no data was available. Analyses were made using computer program XSTABL Version 4.1. Using this computer program, a search for critical surface having minimum factor of safety was made. Both circular and block modes of failure were investigated.

Based on review of results from the Preliminary Slope Stability Analyses, insufficient data are available to perform a comprehensive evaluation at this time. A supplemental field investigation designed to obtain relevant soil property data is needed to perform the

required Slope Stability analyses for submission to the state.

#### **Volume Calculations**

Volume calculations for fly ash utilization associated with the various slopes (1% to 5%) for the finale closure configurations were performed. The results are presented in Attachment 3. Based on the analyses performed, the following conclusions have been developed:

- As the slope of the final cover increases from 1% to 5% the volume of soil to be regraded reduces from 110,000 yd³ for 1% to 75,000 yd³ for 5%.
- As the slope of the final cover increases from 1% to 5%, the volume of structural fill increases from 0 yd³ for 1% to 160,000 yd³ for 5%.
- The volume of protective soil cover (3 feet including vegetative support layer and drainage layer) varies little with the change in final cover grade from 1% to 5% (~100,000 yd³).
- The volume of pozzolanic cap (3 feet thick) varies little with the change in final cover grade from 1% to 5% (~100,000 yd³).
- Utilization of flyash from Basin "A" increases with increasing slope from 1% to 5%.

#### Erosion Potential

Erosion control of the cover system is important, because loss of the soil cover overlying the barrier layer increases the potential for damage by gnawing/burrowing animals, thus decreasing the effectiveness of the barrier. Erosion may be wind- and/or water-induced. The potential for erosion by these two environmental factors should be evaluated using the Universal Soil Loss Equation (USLE) and the Wind Erosion Equation (WEE). Erosion calculations are highly dependent upon the type and condition of vegetation anticipated after closure. Erosion loss due to wind and water can be calculated based on the anticipated short and long term condition of the cover system. No calculations were performed for this phase of the design process.

#### Freeze-Thaw Effects

The maximum estimated frost penetration depth in Central Illinois is 30 inches and the average depth of frost penetration is about 10 inches. A conceptual cover system design for the flat area could provide for soil depth above the barrier. A final cover will not be sensitive to freeze-thaw effects when properly designed

5

#### Air Emission Control

Airborne migration of landfill materials will be predominantly migration of dust particles during closure subgrade preparation and initial placement of the general fill layer. As the general fill layer (variable thickness) installation proceeds, the potential for fugitive dust containing landfilled materials would lessen and then be virtually eliminated once the general fill has been partially completed over the entire site.

#### CONCLUSIONS

Additional field investigation is necessary to better define the geotechnical properties of the impounded flyash, containment dikes, and various soil strata underlying the site, as well as better defining the stratigraphy for the critical sections identified.

A pozzolanic cap having a minimum thickness of 3 feet (0.91 meters) can be constructed. A parametric analysis varying cap permeability from  $1 \times 10^{-5}$  cm/s to  $1 \times 10^{-7}$  cm/s yielded "effectiveness": ranging from 78 percent to 97 percent. The permeability of the cap greatly influences its "effectiveness."

Post-closure settlement has been estimated to be about 1 foot for the cases evaluated. This is a rough estimate based on interpretation of engineering properties from soil descriptions presented in the boring logs provided, and assumed properties of the impounded flyash. Laboratory test data were available for use in these evaluations.

Based on review of results from the Preliminary Analyses, insufficient data are available to perform a comprehensive evaluation at this time. A supplemental field investigation designed to obtain relevant soil property data is needed to perform the required Slope Stability analyses for submission to the state.

#### **LIMITATIONS**

The conclusions and recommendations presented in this report are based on the assumptions that the subsurface conditions at the site and the assumed soil properties do not deviate appreciably from those disclosed by the test boring data provided and that the proposed design is substantially in conformance with the project description. GeoSystems Consultants should be notified immediately should differing conditions be encountered or if significant changes in design are contemplated, so that appropriate revisions can be made to the recommendations.

We sincerely appreciate the opportunity to submit this Progress Report for this challenging project. If you have any questions, please do not hesitate to contact us.Very truly yours,

GEOSYSTEMS CONSULTANTS, INC.

rea)

Craig & Calabria, Ph.D., P.E. Principal

% Effectiveness				
Cases Pozzolanic Cap Permeability (cm/s)				
	1x10 ⁻⁵	1x10 ⁻⁶	1x10 ⁻⁷	
Case 1A	78%	78%	95%	
Case 1B	78%	79%	95%	
Case 2A	78%	81%	96%	
Case 2B	79%	86%	97%	

# Table 1: Pozzolanic Cap Effectiveness

Case 1A:30" topsoil, 6" sand at 1x10⁻³ cm/s, 36" pozzolanic cap on a 1% slopeCase 1B:30" topsoil, 6" sand at 1x10⁻³ cm/s, 36" pozzolanic cap on a 5% slopeCase 2A:18" topsoil, 18" sand at 1x10⁻² cm/s, 36" pozzolanic cap on a 1% slopeCase 2B:18" topsoil, 18" sand at 1x10⁻² cm/s, 36" pozzolanic cap on a 5% slope

# Attachment 1

# Natural Resource Technology, Inc.

TRANSMITTAL

To:	VFL Technology Corporation	Date:	March 11, 2002	
	16 Hagerty Boulevard	Project No:	1375	
	West Chester, PA 19382	From:	Christopher A. Robb	CLAR
		Re:	Data Transfer –Soil Borings, Topography, etc.	
Attn:	Mr. Doug Martin		Ameren Services - Hutsonville Power Station	

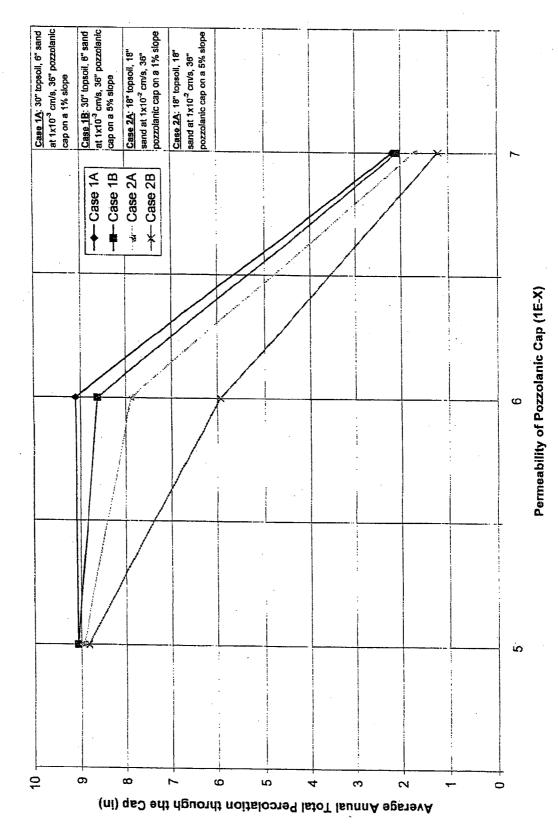
x For Your Files x As Requested x For Review 

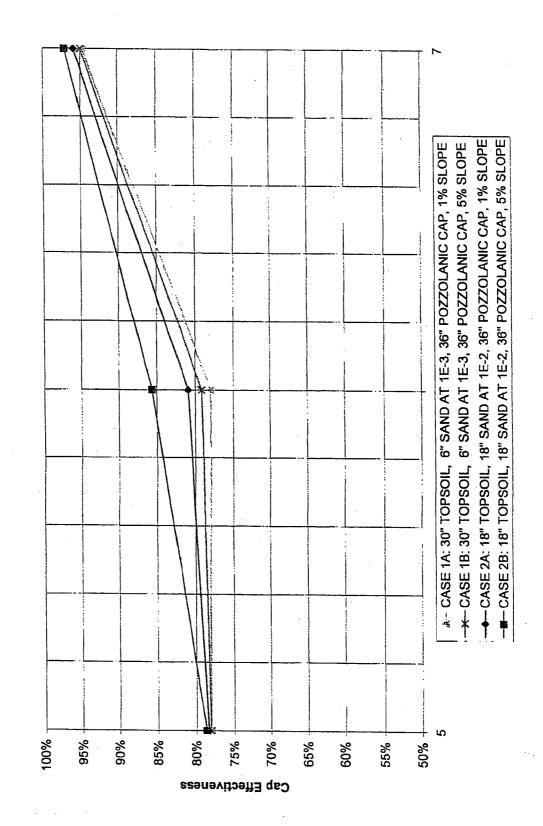
Approve and Return

Copies:	Description
. 1	Boring Logs - EW-1, MW-6, MW-7, MW-7D, MW-8, GP-20 to GP-23, MW-11, MW-11R, SB-101 to SB-103, MW-14, TW
1	Sheet Pile Wall Site Plan (S-350) and Details (S-351): (PARTIAL COPY)
1	Figure No. 3 - Geologic Cross Sections (1375-B12)
1	Figure No. 4 – Bedrock Elevation Contours (1375-B11)
1	Figure No. 5 – Alternative No. 3: Earthen Final Cover (1375-B33C)
1	Figure No. 2 – Site Plan (1375-B30), via electronic mail
1	Table 3-2 – Areal Extent and Volumes of Unsaturated and Saturated Ash In Pond D
<u> </u>	Table 3-3 – Final Cover Alternatives Material Balance Analysis
	Title 35 JAC Part 811 and 816. via electronic mail

#### Comments:

#### Doug,


Please find enclosed copies of the above listed materials. The following is a quick list of some additional potentially useful information:


- GP-20, 21, 22 and 23 are inside of the unlined ash impoundment (Pond D).
- No soil borings were performed in Pond D's berm.
- For Pond D fill: estimated approximately 15,500 cy fill below water surface.

· --

# Attachment 2

POZZOLANIC CAP PERFORMANCE





Cap Design

Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3

#### VFL-15.0UT

Ψ		
********	*********************	****
*****	***************************************	****
**		**
**		**
* *	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	· **
**	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	**
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	**
**	USAE WATERWAYS EXPERIMENT STATION	**
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	* *
		**
* *		**
*****	***********	*****
****	*************	****

PRECIPITATION DATA FILE:	M:\ENGINE~1\HELP-M~1\DATA4.D4
TEMPERATURE DATA FILE:	M:\ENGINE~1\HELP-M~1\DATA7.D7
SOLAR RADIATION DATA FILE:	M:\ENGINE~1\HELP-M~1\DATA13.D13
EVAPOTRANSPIRATION DATA:	M:\ENGINE~1\HELP-M~1\DATA11.D11
SOIL AND DESIGN DATA FILE:	M:\ENGINE~1\HELP-M~1\DATA10.D10
OUTPUT DATA FILE:	M:\ENGINE~1\HELP-M~1\VFL-15.OUT

TIME: 16:55 DATE: 3/27/2002

п

******************

TITLE: VFL/Ameren Services-Hutsonville Power Station

****************

#### NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

## LAYER 1

#### TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 8 THICKNESS 18.00 = INCHES 0.4630 VOL/VOL 0.2320 VOL/VOL 0.1160 VOL/VOL POROSITY = . FIELD CAPACITY = WILTING POINT = = 0.2404 VOL/VOL = 0.369999994000E-03 CM/SEC INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. COND.

## LAYER 2

#### TYPE 2 - LATERAL DRAINAGE LAYER Page 1

		5.OUT
MATERIAL TEXT	URE	NUMBER 5
THICKNESS	=	18.00 INCHES
POROSITY	=	0.4570 VOL/VOL
FIELD CAPACITY	=	
WILTING POINT	8	
INITIAL SOIL WATER CONTENT	=	0.1477 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.10000005000E-02 CM/SEC
SLOPE	=	1.00 PERCENT
DRAINAGE LENGTH	=	375.0 FEET

LAYER 3

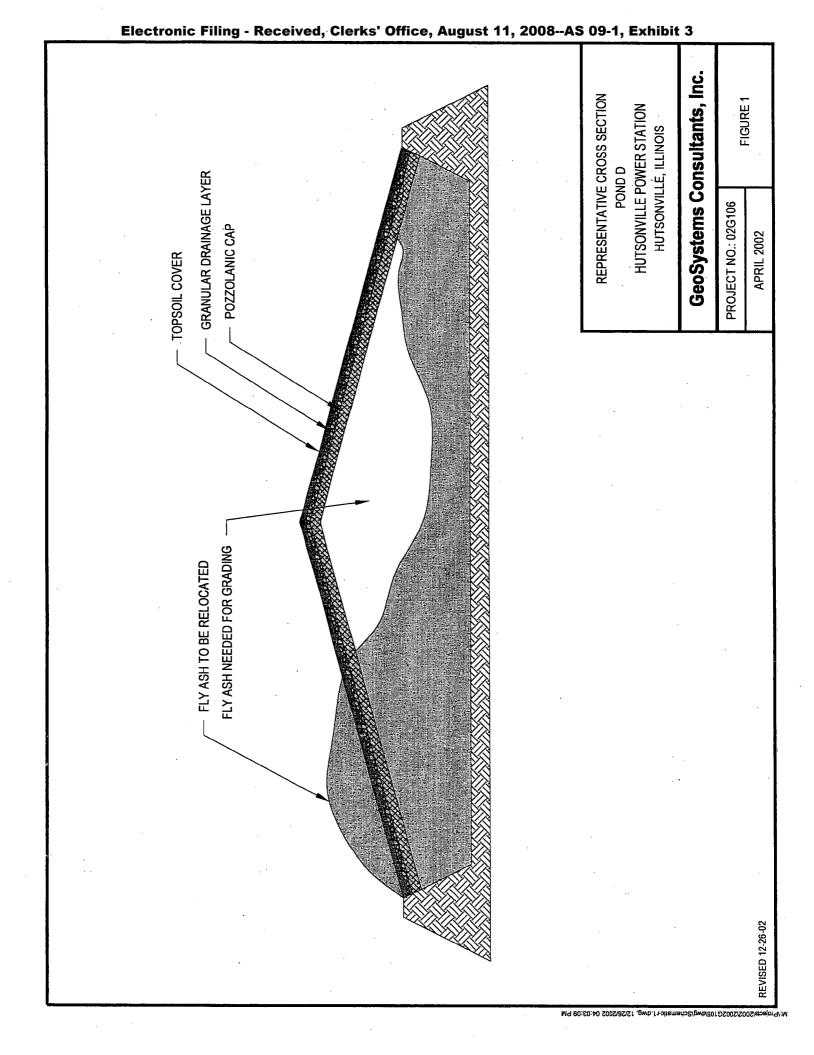
TYPE 3 - BARRIER SOIL LINER

	MAIERIAL	IEXIURE	NUMBER ()		
THICKNESS		=		INCHES	
POROSITY		-		VOL/VOL	
FIELD CAPACITY	1	-	0 1970	VOL/VOL	
WILTING POINT		-	0.10/0	VUL/VUL	
INITIAL SOIL V			0.0470	VOL/VOL	
EFFECTIVE CAT	WATER CONT		0.5410	VOL/VOL	
EFFECTIVE SAT	HYD. CON	ID. =	0.99999997	5000E-05	CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

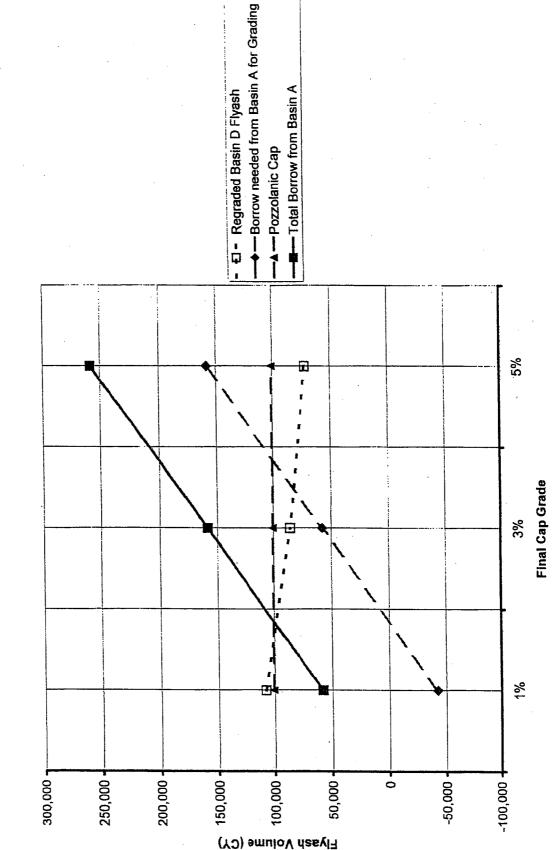
t

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 8 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 1.% AND A SLOPE LENGTH OF 375. FEET.


SCS RUNOFF CURVE NUMBER	Ξ	78.50	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE		1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	21.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	5.014	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	9.705	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	2.262	INCHES
INITIAL SNOW WATER	Ħ	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	26,462	INCHES
TOTAL INITIAL WATER	Ħ	26.462	INCHES
TOTAL SUBSURFACE INFLOW	-	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM EVANSVILLE INDIANA


STATION LATITUDE	_	38 03	DEGREES
MAXIMUM LEAF AREA INDEX	=	0.00	DEGREES
START OF CROWTING GELGAN (SHU SHU SHU	=		
END OF GROWING SEASON (JULIAN DATE)			
EVAPORATIVE ZONE DEPTH	Ħ	200	
	=	21.0	INCHES
Page 2			

# Attachment 3



VOLUMES	SLOPE				
	1%	3%	5%		
GRADING Basin "D" Flyash to be relocated	107,561	85,751	71,811		
Calculated fill from Basin "A"	. (57,828)	42,338	142,531		
Material needed to fill basins	15,500	15,500	15,500		
Total borrow material from Basin"A"	(42,328)	57,838	158,031		
CAP					
Total Cap	201,047	200,745	200,960		
36" Pozzolanic Cap	100,524	100,373	100,480		
18" Drainage Layer	50,262	50,186	50,240		
18" Topsoil	50,262	50,186	50,240		
TOTAL FLYASH BORROW REQUIRED	58,195	158,211	258,511		

#### Ameren Services - Hutsonville Power Station Basin "D" Closure EARTHWORK QUANTITIES



Earthwork Quantities for Closure

ş

## Appendix A –2

Analytical Laboratory Reports from Dalare Laboratories Philadelphia Pa.

VFL Technology Corporation Hutsonville Power Station C-1703-02





Dalare Associates Inc.

217 S. 24th Street / Philadelphia, PA. 19103 Telephone 215 - 567 - 1953 / Facsimile 215 - 567 - 1168

ANALYTICAL AND ENVIRONMENTAL TESTING

April 25, 2002

VFL Technology Attn.: Rocus Peters 16 Hagerty Blvd. West Chester, PA 19382

Dear Mr. Peters:

We have examined the sample submitted and would report our findings as follows:

Date Received: 4/2/02

Analytical Report # 328

. . .

Hutsonville Power Fly Ash (3/28/02) 34.4 mg/Kg

.95.0 mg/Kg

mg/Kg

く1.0

Total Metals:
Arsenic
Barium
Cadmium
Chromium
Lead
Mercury
Selenium
Silver .
TCLP Leachate:
A

	,
Arsenic	
Barium	
Cadmium	
Chromium	
Lead	
Mercury	
Selenium	
Silver	

mg/L	<ul> <li>milligrams</li> <li>milligrams</li> <li>Less than</li> </ul>	per per	Kilogram Liter
01 - 987 036-77 1777-787 1777-787	"ໆ" ບ		

24.3	mg/Kg
55.6	mg/Kg
0.076	mg/Kg
18.3	mg/Kg
< 1.0	mg/Kg
0.020	mg/L
0.56	mg/L
0.01	mg/L
< 0.01	mg/L

<	0.01	mg/L
	0.12	mg/L
<	0.001	mg/L
	0.013	mg/L
<	0.01	$m\sigma/T$ .

Very truly yours,

DALARE ASSOCIATES, INC.

Paul A. Weber

Dalare Associates Inc.

217 S. 24th Street / Philadelphia, PA. 19103

Telephone 215 - 567 - 1953 / Facsimile 215 - 567 - 1168

ANALYTICAL AND ENVIRONMENTAL TESTING

October 2, 2002

VFL Technology Attn.: Rocus Peters 16 Hagerty Blvd. West Chester, PA 19382

Dear Mr. Peters:

We have examined the samples submitted and would report our findings as follows:

Date Received: 9/27/02

Analytical Report # 910

Hutsonville

	<u>Mix #2</u>	<u>Mix #5</u>
TCLP Leachate: Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	<ul> <li>&lt; 0.010 PPM</li> <li>0.28 PPM</li> <li>&lt; 0.01 PPM</li> <li>&lt; 0.06 PPM</li> <li>&lt; 0.02 PPM</li> <li>&lt; 0.001 PPM</li> <li>&lt; 0.019 PPM</li> <li>&lt; 0.01 PPM</li> </ul>	<pre>&lt; 0.010 PPM 0.25 PPM &lt; 0.01 PPM &lt; 0.01 PPM &lt; 0.02 PPM &lt; 0.001 PPM 0.010 PPM &lt; 0.01 PPM</pre>

PPM = Parts per Million < = Less than

The TCLP Leachate was analyzed in accordance with the method described in the Federal Register, Volume 55, No.61, 3/29/90, pages 11863-75.

Very truly yours,

DALARE ASSOCIATES, INC.

Paul A. Weber

PAW:jc



Dalare Associates Inc.

217 S. 24th Street / Philadelphia, PA. 19103 Telephone 215 - 567 - 1953 / Facsimile 215 - 567 - 1168

ANALYTICAL AND ENVIRONMENTAL TESTING

October 2, 2002

VFL Technology Attn.: Rocus Peters 16 Hagerty Blvd. West Chester, PA 19382

Dear Mr. Peters:

We have examined the samples submitted and would report our findings as follows:

Date Received: 9/18/02

Analytical Report # 908

Hutsonville

	<u>Mix #9</u>	<u>Mix #14</u>
TCLP Leachate: Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	<pre>&lt; 0.010 PPM     0.14 PPM     0.01 PPM     0.05 PPM &lt; 0.02 PPM &lt; 0.001 PPM &lt; 0.001 PPM &lt; 0.010 PPM &lt; 0.010 PPM</pre>	<pre>&lt; 0.010 PPM 0.11 PPM &lt; 0.01 PPM &lt; 0.01 PPM &lt; 0.02 PPM &lt; 0.001 PPM &lt; 0.010 PPM &lt; 0.010 PPM</pre>

PPM = Parts per Million < = Less than

The TCLP Leachate was analyzed in accordance with the method described in the Federal Register, Volume 55, No.61, 3/29/90, pages 11863-75.

Very truly yours,

DALARE ASSOCIATES, INC.

Paul A. Weber

:

PAW:jc

## **APPENDIX D**

## GROUNDWATER TRANSPORT MODELING RESULTS AND SUPPORTING DOCUMENTATION

#### Table D-1 **HELP Input Parameters**

Cap. Report Designation         Developing         CO-1         CO-2         CO-3a         CO-3a         CO-3c           City         Evansville         Evansville         Evansville         Evansville         Evansville         Evansville           City         Evansville         Evansville         Evansville         Evansville         Evansville         Evansville         Evansville           Latitude         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13         39 13	Time Period	2001-2003			2004-2025			Notes
Clineal Cargenia         Eventoryline         Eventoryline         Eventoryline         Eventoryline         Eventoryline           Laflucze         36:13         36:13         36:13         36:13         36:13         36:13         36:13         36:13         36:13         36:13         36:13         36:13         72:1         21:1         22:1         22:1         22:1         22:1         Defaults for (21)           Latel Index         1         2:1         2:1         2:1         2:1         Defaults for (21)           All Orman         2:1         2:1         2:1         Defaults for (21)         Defaults for (21)           All Orman         5:ee note         see			CO-1	CO-2		CO-3b	CO-3c	
Latikude         39.13         39.13         39.13         39.13         29.13         29.14         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211         211								
Eva Zone         9         21         21         21         21         Der (9, fur (2))           Load Index         1         2         2         2         2         Defaults or (2)           All Others								
Leaf Indux         1         2         2         2         2         Der (1), (1), (2), (2), (2), (2), (2), (2), (2), (2								
All Others         Defaults for Example, PI           All         see note								
Climate precipitempET         All         See note         Syntaps Waters See note         Syntaps Waters See note         See note         See note         Syntaps Waters See note         Syntaps Waters See note         Syntaps Waters See note         Syntaps Waters See note         Syntaps Waters See note         Syntaps Waters See note         Syntaps Waters See note         Syntaps Waters See note         See note         See note         See note         See note         See note         See note         See note         See note         See note         See note         Syntaps Waters See note         See note         See note         See note         See note         See note         See note         See note         See note         See note         See note         See note         See note         See note         See note         See note         See note         See note         See note         See		1	2	2	2	2	2	
All         see note								Defaults for Evansville, IN
Avea         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	All	see note	see note	see note	see note	see note	see note	defaults, plant 30 year averages precip, and
% where number possible         0         100         100         100         100         100           Surface Water/Snow         60°         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0					<u> </u>			
Speech Initial MC         Y         Y         Y         Y         Y           Sufface WaterShow         C         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0								unit area
Surface Weier/Show         66''         0         0         0         0         represents ponded condition           1         ash         nalive         nalive <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Solis-Layers								represents ponded condition
1         ash         native         native         native         native         native         native         prozeolonic           3         ash			Ŭ		v	<u> </u>		represents ponded contailor
2         ash		ash	native	native	native	native	native	
4         ash	2	ash						
5         ash         ash         ash         ash         ash         ash         ash           Type         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	3	ash	ash	ash	ash	ash	ash	
Soil Parameters-native         Image: space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the space of the			ash					
Type         1         1         1         1         1         1         vertical percolation layer           Tinckness (in)         36         36         36         36         36           Moisture Content         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232<				ash	ash	ash	ash	
Thickness (n)         36         36         36         36         36           Texture         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Texture         B         B         B         B         B         Dam, default parameters used           Moisture Content         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.232         0.233         0.233         0.233         0.233         0.233         0.233								vertical percolation layer
Moisture Content         0.232         0.232         0.232         set equal to field capacity           Soil Parameters-synthetic         4								
Soil Parameters-synthetic         4         2         2           Type         4         0.03         geomembrane           Texture         37         2         default for PVC           K (cm/s)         200E-11         etault of PVC         default for PVC           Pinchel devely         1         good placement quality         good placement quality           Soil Parameters-pozzolanic         3         3         batrier layer (see note below)           Thekness (n)         36         36         36           Texture         106         16         16         default barrier soil           Mosture Content         0.187         0.187         0.187         default barrier soil           Mosture Content         0.187         0.187         0.187         default barrier soil           Soil Parameters-ash layers         1         1         1         1         1           Thickness (n)         60         60         60         60         60           Texture         30         30         30         30         90           Thickness (n)         60         60         60         60         60           Texture         30         30         30								
Type         4         geometriane           Thickness (in)         0.03			0.232	0.232	0.232	0.232	0.232	set equal to field capacity
Thickness (in)         0.03         method           Texture         37         default for PVC           K (cm/s)         2.00E-11         default for PVC           Plancie density         1         default for PVC           Installation Defects         4         good placement quality           Soil Parameters-pozzolaric         3         3         barrier layer (see note below)           Thickness (in)         0.187         0.187         0.187         other soil           Moisture Content         0.187         0.187         0.187         other soil         other soil           Moisture Content         0.187         0.187         0.187         other soil         other soil         other soil           Moisture Content         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		i		A				anomombrana
Texture         37         default for PVC           K (cm/s)         2:00E-11								geomenibrane
K (cm/s)         2.00E-11           Pinhole density         1           Installation Defects         4           Placement Quality         3           Soli Parameters-pozolanic								default for PVC
Prinole density         1         1         1           Installation Delects         4								
Installation Defects         4         9         good placement quality         good placement quality           Soil Parameterspozzolanic         3         3         3         3         3           Trype         3         3         3         3         3         3           Thickness (in)         36         36         36         36         36           Texture         16         16         16         default barrier soil         36           Moisture Content         0.187         0.187         0.187         set equal to field capacity           K (cm/s)         1.00E-07         1.00E-06         1.00E-05         50         Parameters-ash layers								
Soil Parameterspozzolanic         3         3         3         barrier layer (see note below)           Type         36         36         36         36         36           Texture         16         16         16         default barrier soil         16           Moisture Content         0.187         0.187         0.187         set equal to field capacity           K (cm/s)         1         1         1         1         1           Soil Parameters-ash layers         1         1         1         1         1           Texture         30         30         30         30         30         30           Porosity         0.541         0.541         0.541         0.541         0.541         0.541           Viling point         0.47         0.47         0.47         0.47         0.47         0.47           Moisture Content - L1         0.541         0.2504         0.2504         0.2504         0.2504         0.2603           Moisture Content - L3         0.541         0.2614         0.2604         0.2604         0.2604         0.2604         0.2604         0.2604         0.2604         0.2604         0.2603         0.2683         0.2683         0.2683<				4				
Type         3         3         3         barrier layer (see note below)           Thickness (in)         36         36         36         36           Texture         0.187         0.187         0.187         set equal to field capacity           K (cm/s)         1.00E-07         1.00E-06         1.00E-05         set equal to field capacity           Soil Parameters-ash layers         1         1         1         1         1           Type         1         1         1         1         1         1           Thickness (in)         60         60         60         60         60         Forcesity         0.187         0.187         0.187           Porosity         0.541         0.541         0.541         0.541         0.541         0.541         0.541         0.541         0.541         0.477         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212	Placement Quality			3				good placement quality
Thickness (in)         38         36         36           Texture         16         16         16         16         16           Moisture Content         0.187         0.187         0.187         set equal to field capacity           K (cmvls)         1.00E-07         1.00E-06         1.00E-05         set equal to field capacity           Soli Parameters-ash layers         1         1         1         1         1           Texture         30         30         30         30         30         30           Porosity         0.541         0.541         0.541         0.541         0.541         0.641           Field Capacity         0.187         0.187         0.187         0.187         0.187         0.187           Witting point         0.541         0.2504         0.2504         0.2504         0.2504         0.2604         0.2604           Moisture Content - L1         0.541         0.2312         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3	Soil Parameterspozzolar	nic						
Texture         16         16         16         16         default barrier soil           Moisture Content         0.187         0.187         0.187         0.187         set equal to field capacity           Soil Parameters-ash layers         1.00E-07         1.00E-06         1.00E-05         set equal to field capacity           Type         1         1         1         1         1         1           Thickness (in)         60         60         60         60         60           Porcsity         0.541         0.541         0.541         0.541         0.541           Field Capacity         0.187         0.187         0.187         0.187         0.187           Witting point         0.047         0.047         0.047         0.047         0.047         0.047           Moisture Content - L1         0.541         0.2504         0.2504         0.22504         0.22504         0.2683         (ponded) conditions, CO- case MC values equiliation           Moisture Content - L2         0.541         0.2261         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212								barrier layer (see note below)
Moisture Content         0.187         0.187         0.187         0.187         set equal to field capacity           K (cm/s)         1.00E-07         1.00E-06         1.00E-05         set equal to field capacity           Type         1         1         1         1         1         1           Thickness (in)         60         60         60         60         60           Texture         30         30         30         30         30         30           Porosity         0.541         0.541         0.541         0.541         0.671         0.677           Witing point         0.047         0.047         0.047         0.047         0.047         0.047           Moisture Content - L1         0.541         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         0.2505         5.00E-05         5.00E-05								
K (cm/s)         1.00E-07         1.00E-06         1.00E-05           Soil Parametersash layers				l				
Soll Parameters-ash layers         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>set equal to field capacity</td>								set equal to field capacity
Type         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1         1</th1<>					1.00E-07	1.00E-06	1.00E+05	
Thickness (in)         60         60         60         60         60           Texture         30         30         30         30         30         30           Porosity         0.541         0.541         0.541         0.541         0.541         0.541           Field Capacity         0.187         0.187         0.187         0.187         0.187         0.187           Witting point         0.047         0.047         0.047         0.047         0.047         0.047           Moisture Content - L1         0.541         0.2504         0.2504         0.2504         0.2504         0.2683         (ponded) conditions, CO- case MC values equivalence           Moisture Content - L2         0.541         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212				1	1	1	1	
Texture         30         30         30         30         30         30           Porosity         0.541         0.541         0.541         0.541         0.541         0.541           Field Capacity         0.187         0.187         0.187         0.187         0.187         0.187           Witting point         0.047         0.047         0.047         0.047         0.047         0.047           Moisture Content - L1         0.541         0.2504         0.2504         0.2504         0.2504         0.2504         0.2504         base case moisture content for saturated Moisture Content - L2         0.541         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.883         0.2883         0.2883         0.883         0.2803 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Porosity         0.541         0.541         0.541         0.541         0.541         0.541         0.541         0.541         0.541         0.541         0.541         0.541         0.541         0.541         0.541         0.541         0.187         0.187         0.187         0.187         0.187         0.187         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047								
Field Capacity         0.187         0.187         0.187         0.187         0.187         0.187         0.187         0.187         0.187         0.187         0.187         0.187         0.187         0.187         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.050         0.050								
Wilting point         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.03212         0.03212         0.03212 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Moisture Content - L1         0.541         0.2504         0.2504         0.2504         0.2504         base case moisture content for saturated (ponded) conditions, CO- case MC values eq to MC at end of base case simulation           Moisture Content - L3         0.541         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212         0.3212								· · · · · · · · · · · · · · · · · · ·
Moisture Content - L2         0.541         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         0.2883         to MC at end of base case simulation           K (cm/s)         5.00E-05								base case moisture content for saturated
K (cm/s)         5.00E-05         5.00E-05         5.00E-05         5.00E-05         5.00E-05           Solls-Runoff         Name         Nam         Name         Name						0.2883		(ponded) conditions, CO- case MC values equal
SoilsRunoff         n/a         HELP CN         HELP CN <th<help chan="" constandito<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>to MC at end of base case simulation</td></th<help>								to MC at end of base case simulation
Equation         n/a         HELP CN         HELP CN         HELP CN         HELP CN         HELP CN           Slope         n/a         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%		5.00E-05	5.00E-05	5.00E-05	5.00E-05	5.00E-05	5.00E-05	
Stope         n/a         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2% <th< td=""><td></td><td>  </td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
Length (ft)         n/a         500         500         500         500           Texture         n/a         8         8         8         8         8           Vegetation         n/a         fair         fair         fair         fair         fair           Execution Parameters                 Years         1-3         4-25         4-25         4-25         4-25         4-25           Report Daily         n         n         n         n         n         n         n           Report Monthly         y         y         y         y         y         y         y           Report Annual         y         y         y         y         y         y         y           Output Filename (*.out)         Base         CO-1         CO-2         CO-3a         CO-3c         CO-3c           Precip File (*.D7)         hutx         hutx4_23         hutx4_23         hutx4_23         hutx4_23           SR (*.D13)         hutbase         hutco         hutco         hutco         hutco           ET/general (*.D11)         hutbase         hutco         hutco <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Texture         n/a         8         8         8         8         8         8           Vegetation         n/a         fair								
Vegetation         n/a         fair								
Execution Parameters         1-3         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25         4-25 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Years         1-3         4-25         4-25         4-25         4-25         4-25         4-25           Report Daily         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n			1018		100	100	, raii	
Report Daily         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n <t< td=""><td></td><td>1-3</td><td>4-25</td><td>4-25</td><td>4-25</td><td>4-25</td><td>4-25</td><td></td></t<>		1-3	4-25	4-25	4-25	4-25	4-25	
Report Monthly         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y								
Report Annual         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         <								
Output Filename (*.out)         Base         CO-1         CO-2         CO-3a         CO-3b         CO-3c           Precip File (*.D4)         hutx         hutx4_23         hutx4_23         hutx4_23         hutx4_23         hutx4_23           Temp File (*.D7)         hutx         hutx4_23         hutx4_23         hutx4_23         hutx4_23           SR (*.D13)         hutbase         hutco         hutco         hutco         hutco           ET/general (*.D11)         hutbase         hutco         hutco         hutco         hutco								
Precip File (*.D4)         hutx         hutx4_23         hutx4_23         hutx4_23         hutx4_23           Temp File (*.D7)         hutx         hutx4_23         hutx4_23         hutx4_23         hutx4_23           SR (*.D13)         hutbase         hutco         hutco         hutco         hutco           ET/general (*.D11)         hutbase         hutco         hutco         hutco         hutco							í í	
Temp File (*.D7)         hutx         hutx4_23         hutx4_23         hutx4_23         hutx4_23           SR (*.D13)         hutbase         hutco         hutco         hutco         hutco           ET/general (*.D11)         hutbase         hutco         hutco         hutco         hutco							CO-3c	
SR (*.D13)         hutbase         hutco         hutco         hutco           ET/general (*.D11)         hutbase         hutco         hutco         hutco								
ET/general (*.D11) hutbase hutco hutco hutco hutco contenti hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco hutco								
סטו דוופ ("-נורט")   Base   CO-1   CO-2   CO-3a   CO-3b   CO-3c								
Note:		Base	CO-1	<u> </u>	CO-3a	CO-3b	CO-3c	I

Note: Pozzolanic cap scenarios (CO-3a.b.c) were modeled as both vertical percolation layers and barrier layers. Results when modeled as vertical percolation layers were identical to each other, and identical to results for CO-3C when modeled as a vertical percolation layer. Barrier layer results are presented here to show maximum modeled difference between scenarios

Period         Length (davs)         CO-1         CO-2         CO-3a           1         120         0.0670         0.0670         0.0670           2         123         0.0103         0.0103         0.0103           3         122         0.0032         0.0032         0.0032           4         120         0.0036         0.0036         0.0036           5         123         0.0036         0.0036         0.0036           6         123         0.0045         0.0036         0.0045           7         365         0.0045         0.0045         0.0045           8         365         0.0042         0.0042         0.0042	Model	Stress	Period	Rech	Recharge Rates Used in MODFLOW (feet/day)	Used in MOC	FLOW (feet	(day)	
1         120         0.0670         0.0670         0.0670           2         123         0.0103         0.0103         0.0103           3         122         0.0032         0.0032         0.0032           4         120         0.0036         0.0036         0.0036           5         123         0.0085         0.0036         0.0036           6         123         0.0085         0.0085         0.0085           7         365         0.0045         0.0045         0.0045           8         365         0.0018         0.0018         0.0045	Year	Period	Length (davs)	CO-1	CO-2	СО-За	CO-3b	CO-3c	Notes
2     123     0.0103     0.0103     0.0103       3     122     0.0032     0.0032     0.0032       4     120     0.0036     0.0036     0.0036       5     123     0.0085     0.0085     0.0085       6     122     0.0045     0.0045     0.0045       7     365     0.0042     0.0042     0.0042       8     365     0.0018     0.0018     0.0018	2001	Ŧ	120	0.0670	0.0670	0.0670	0.0670	0.0670	
3     122     0.0032     0.0032     0.0032       4     120     0.0036     0.0036     0.0036       5     123     0.0085     0.0085     0.0085       6     122     0.0045     0.0045     0.0045       7     365     0.0042     0.0042     0.0042       8     365     0.0042     0.0042     0.0042	2001	2	123	0.0103	0.0103	0.0103	0.0103	0.0103	
4     120     0.0036     0.0036     0.0036       5     123     0.0085     0.0085     0.0085       6     122     0.0045     0.0045     0.0045       7     365     0.0042     0.0042     0.0042       8     365     0.0018     0.0018     0.0042	2001	3	122	0.0032	0.0032	0.0032	0.0032	0.0032	
5     123     0.0085     0.0085     0.0085       6     122     0.0045     0.0045     0.0045       7     365     0.0042     0.0042     0.0042       8     365     0.0018     0.0018     0.0018	2002	4	120	0.0036	0.0036	0.0036	0.0036	0.0036	Dewatering, no cap or leachate collection system modeled
6         122         0.0045         0.0045         0.0045         0.0045           7         365         0.0042         0.0042         0.0042         0.0042           8         365         0.0018         0.0018         0.0018         0.0018	2002	5	123	0.0085	0.0085	0.0085	0.0085	0.0085	
7         365         0.0042         0.0042         0.0042           8         365         0.0018         0.0018         0.0018	2002	9	122	0.0045	0.0045	0.0045	0.0045	0.0045	
8 365 0.0018 0.0018 0.0018 0 7665 0.0018 0.0018	2003	7	365	0.0042	0.0042	0.0042	0.0042	0.0042	
	2004	8	365	0.0018	0.0018	0.0018	0.0019	0.0019	Cap (and leachate collection
	2005-2025	6	7665	0.0018	0.0004	0.0005	0.0018	0.0018	two stress periods

Table D-3 MODFLOW Drain Construction for LEO-1, LEO-2, LEO-3, and LEO-4

				Drain Bed	Drain Bed				
		-	Drain Bed	Hydraulic		South/East	North/West	MODFLOW .	
Drain	Drain Length (feet)	Diameter (feet)	Thickness (feet)	Conductivity (cm/s)	Conductivity (ft/day)	Drain Base Elevation	Drain Base Elevation	Layer Number	MODFLOW Drain Reach
1a	1000	ы	-	0.1	283	440	423	2	+
2a	70	ю	F	0.1	283	423	423	2	2
3а	105	с	F	0.1	283	423	422	2	3
4a	615	e	Ŧ	0.1	283	422	420	2	4
5a	710	ю	1	0.1	283	420	425	2	5
6a	700	3	ŀ	0.1	283	425	425	2	6
1b	1000	3	Ţ	0.1	283	437	420	2	1
2b	20	ო	Ŧ	0.1	283	420	420	5	2
3b	105	3	1	0.1	283	420	419	2	3
4b	615	£	1	0.1	283	419	417	2	4
5b	710	3	1	0.1	283	417	422	2	5
6b	200	3	1	0.1	283	422	422	2	6

				Leachate Extraction Option	action Option			
Extraction Type	LEOa-1	LEOb-1	LEOa-2	LEOb-2	LEOa-3	LEOb-3	LEOa-4	LEOb-4
1a	Nn		NO	-	On	•	uO	-
2a			ŋ	•	•	•	٥u	-
За	•	۲	чО	-	-	•	uO	-
4a			uO	•		٠	٥u	-
5a	•		uO	-			uO	-
6a	-	•	NO	•	•		•	•
1b		чÖ	-	NO		On	-	NO
2b	•	•	•	uO	•	•	•	On
3b		•	-	On	1	•	1	On
4b	-	-	-	on	•	•	-	On
5b	•	•	•	uO	•	•	•	On
6b		•	•	On	•	•	•	÷
Extraction Wells	On	NO	1	•	•	•	-	4

Table D-4

Hutsonville Pond D Leachate Collection Scenarios Estimated Discharge Volumes (MODFLOW Data)

CO-2 and	LEOa-1				
Str	ess		Volume		ain
Period	Step	ft ³ /day	gpm	ft ³ /day	gpm
8	1	42,350	220	11,890	62
	2	42,350	220	10,265	53
	3	42,350	220	9,929	52
	4	42,350	220	9,752	51
	5	42,350	220	9,615	50
	6	42,350	220	9,530	50
9	1	42,350	220	9,397	49
	2	42,350	220	9,314	48
	3	42,350	220	9,239	48
	4	42,350	220	9,169	48
	5	42,350	220	9,102	47
	6	42,350	220	9,055	47
	7	42,350	220	9,032	47
	8	42,350	220	9,004	47
	9	42,350	220	8,993	47
	10	42,350	220	8,978	47
	11	42,350	220	8,954	47
	12	42,350	220	8,941	46
	13	42,350	220	8,941	46
	14	42,350	220	8,941	46
	15	42,350	220	8,941	46
1	16	42,350	220	8,941	46
	17	42,350	220	8,941	46
	18	42,350	220	8,941	46
	Average	42,350	220	9,325	48

CO-2 and	LEOb-1	Ĺ			
Str	ess	Wells - Volume		Drain	
Period	Step	ft³/day	gpm	ft ³ /day	gpm
8	1	42,350	220	26,197	136
	2	42,350	220	23,715	123
	3	42,350	220	23,254	121
	4	42,350	220	23,049	120
	5	42,350	220	22,945	119
	6	42,350	220	22,862	119
9	1	42,350	220	22,728	118
	2	42,350	220	22,645	118
	3	42,350	220	22,554	117
	4	42,350	220	22,518	117
	5	42,350	220	22,461	117
	6	42,350	220	22,427	117
	7	42,350	220	22,394	116
	8	42,350	220	22,365	116
	9	42,350	220	22,344	116
	10	42,350	220	22,329	116
	11	42,350	220	22,324	116
	12	42,350	220	22,316	116
	13	42,350	220	22,316	116
	14	42,350	220	22,316	116
	15	42,350	220	22,316	116
	16	42,350	220	22,316	116
	17	42,350	220	22,311	116
	18	42,350	220	22,308	116
	Average	42,350	220	22,721	118

CO-2 and	LEOa-2				
Str	Stress		Wells - Volume		ain
Period	Step	ft ³ /day	gpm	ft³/day	gpm
8	1	0	0	184,200	957
	2	0	0	177,860	924
	3	0	0	176,870	919
	4	0	0	176,460	917
	5	0	0	176,230	915
	6	0	0	176,040	914
9	1	0	0	175,680	913
	2	0	0	175,400	911
	3	0	0	175,240	910
	4	0	0	175,120	910
	5	0	0	174,930	909
	6	0	0	174,870	908
	7	0	0	174,850	908
	8	0	0	174,770	908
	9	0	0	174,720	908
	.10	0	0	174,680	907
	11	0	0	174,650	907
	12	0	0	174,650	907
	13	0	0	174,650	907
	14	0	0	174,650	907
	15	0	0	174,650	907
	16	0	0	174,650	907
	17	0	0	174,650	907
	18	0	0	174,650	907
	Average	0	0	175,630	912

CO-2 and	LEOb-2	l			
Stress		Wells - Volume		Drain	
Period	Step	ft³/day	gpm	ft ³ /day	gpm
8	1	0	0	265,280	1378
	2	0	0	257,920	1340
	3	0	0	256,850	1334
	4	0	0	256,430	1332
	5	0	0	256,210	1331
	6	0	0	256,030	1330
9	1	0	0	255,620	1328
	2	0	0	255,390	1327
	3	0	0	255,190	1326
	4	0	0	255,130	1325
	5	0	0	255,010	1325
	6	0	0	254,940	1324
	7	0	0	254,890	1324
·	8	0	0	254,810	1324
	9	0	0	254,730	1323
	10	0	0	254,680	1323
	11	0	0	254,680	1323
	12	0	0	254,660	1323
	13	0	0	254,660	1323
	14	1 0	0	254,660	1323
	15	0	0	254,660	1323
	16	0	0	254,660	1323
	17	0	0	254,660	1323
	18	0	0	254,660	1323
	Average	0	0	255,684	1328

1375 Model Report Tables.xls

CO-2 and LEOb-3

1

Table D-4 (continued)

Hutsonville Pond D Leachate Collection Scenarios Estimated Discharge Volumes (MODFLOW Data)

CO-2 and	LEOa-3				
Stress		Wells - Volume		Drain	
Period	Step	ft ³ /day	gpm	ft ³ /day	gpm
8	1	0	0	14,191	74
	2	0	0	12,791	66
	3	0	0	12,517	65
	4	0	0	12,361	64
	5	0	0	12,234	64
	6	0	0	12,152	63
9	1	0	0	12,017	62
	2	0	0	11,934	62
	3	0	0	11,859	62
	4	0	0	11,797	61
	5	0	0	11,729	61
	6	0	0	11,685	61
	7	0	0	11,662	61
	8	0	0	11,628	60
	9	0	0	11,605	60
	10	0	0	11,594	60
	11	0	0	11,579	60
	12	0	0	11,576	60
	13	0	0	11,576	60
	14	0	0	11,576	60
	15	0	0	11,574	60
	16	0	0	11,574	60
	17	0	0	11,574	60
	18	0	0	11,574	60
	Average	0	0	11,932	62

Stress		Wells -	Volume		ain
Period	Step	ft ³ /day	gpm	ft ³ /day	gpm
8	1	0	0	28,412	148
	2	0	0	26,176	136
	3	0	0	25,772	134
	4	0	0	25,573	133
	5	0	0	25,474	132
	6	0	0	25,389	132
9	1	0	0	25,267	131
	2	0	0	25,181	131
	3	0	0	25,096	130
	4	0	0	25,057	130
	5	0	0	25,000	130
	6	0	0	24,966	130
	7	0	0	24,927	129
	8	0	0	24,907	129
	9	0	0	24,891	129
	10	0	0	24,865	129
	11	0	0	24,863	129
	12	0	0	24,850	129
	13	0	0	24,850	129
	14	0	0	24,850	129
	15	0	0	24,850	129
	16	0	0	24,850	129
	17	0	0	24,850	129
	18	0	0	24,850	129
	Average	0	0	25,240	131

CO-2 and	LEOa-4				
	Stress		Wells - Volume		ain
Period	Step	ft ³ /day	gpm	ft³/day	gpm
8	1	0	0	149,490	777
	2	0	0	143,740	747
	3	0	0	142,840	742
1	4	0	0	142,470	740
	5	0	0	142,260	739
	6	0	0	142,130	738
9	1	0	0	141,810	737
	2	0	0	141,620	736
	3	0	0	141,510	735
	4	0	0	141,410	735
	5	0	0	141,290	734
	6	0	0	141,250	734
	7	0	0	141,240	734
	8	0	0	141,200	734
	9	0	0	141,130	733
	10	0	0	141,110	733
	11	0	0	141,090	733
	12	0	0	141,090	733
	13	0	0	141,080	733
	14	0	0	141,080	733
1	15	0	0	141,080	733
1	16	0	0	141,080	733
1	17	0	0	141,080	733
	18	0	0	141,080	733
	Average	0	0	141,882	737

CO-2 and	LEOb-4	2			
Str	Stress		Wells - Volume		ain
Period	Step	ft ³ /day	gpm	ft ³ /day	gpm
8	1	0	0	183,420	953
	2	0	0	176,720	918
	3	0	0	175,740	913
	4	0	0	175,380	911
	5	0	0	175,180	910
	6	0	0	175,040	909
9	1	0	0	174,720	908
	2	0	0	174,550	907
	3	0	0	174,420	906
	4	0	0	174,370	906
	5	0	0	174,280	905
1	6	0	0	174,230	905
1	7	0	0	174,200	905
	8	0	0	174,150	905
	9	· 0	0	174,080	904
	10	0	0	174,050	904
	11	0	0	174,050	904
	12	' 0	0	174,040	904
	13	' 0	0	174,040	904
	14	0	0	174,040	904
	15	0	0	174,030	904
	16	; 0	0	174,030	904
	17	· 0	0	174,030	904
	18	0	0	174,030	904
	Average	0	0	174,868	908

#### Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3 Table D-4 (continued) Hutsonville Pond D Leachate Collection Scenarios

Estimated Discharge Volumes (MODFLOW Data)

CO-3c and	LEOa-1				
Stress		Wells -	Wells - Volume		ain
Period	Step	ft ³ /day	gpm	ft ³ /day	gpm
8	1	42,350	220	11,892	62
	2	42,350	220	10,273	53
	3	42,350	220	9,939	52
	4	42,350	220	9,770	51
	5	42,350	220	9,633	50
	6	42,350	220	9,540	50
9	1	42,350	220	9,501	49
	2	42,350	220	9,460	49
	3	42,350	220	9,418	49
	4	42,350	220	9,369	49
	5	42,350	220	9,314	48
	6	42,350	220	9,281	48
	7	42,350	220	9,268	48
	8	42,350	220	9,232	48
	9	42,350	220	9,216	48
	10	42,350	220	9,203	48
	11	42,350	220	9,188	48
	12	42,350	220	9,188	48
	13	42,350	220	9,188	48
	14	42,350	220	9,180	48
	15	42,350	220	9,180	48
	16	42,350	220	9,182	48
	17	42,350	220	9,180	48
	18	42,350	220	9,177	48
	Average	42,350	220	9,490	49

CO-3c and	LEOb-1	ĺ			
Stress		Wells - Volume		Drain	
Period	Step	ft ³ /day	gpm	ft ³ /day	gpm
8	1	42,350	220	26,200	136
	2	42,350	220	23,723	123
	3	42,350	220	23,264	121
	4	42,350	220	23,062	120
		42,350	220	22,961	119
	6	42,350	220	22,873	119
9	1	42,350	220	22,829	119
	2	42,350	220	22,785	118
ĺ	3	42,350	220	22,717	118
	4	42,350	220	22,702	118
	5	42,350	220	22,655	118
	6	42,350	220	22,632	118
	7	42,350	220	22,593	117
	8	42,350	220	_22,577	117
	9	42,350	220	22,552	117
	10	42,350	220	22,544	117
	11	42,350	220	22,539	117
	12	42,350	220	22,536	117
	13	42,350	220	22,536	117
	14	42,350	220	22,539	117
	15	42,350	220	22,536	117
	16	42,350	220	22,539	117
	17	42,350	220	22,536	117
	18	42,350	220	22,536	117
	Average	42,350	220	22,874	119

ł

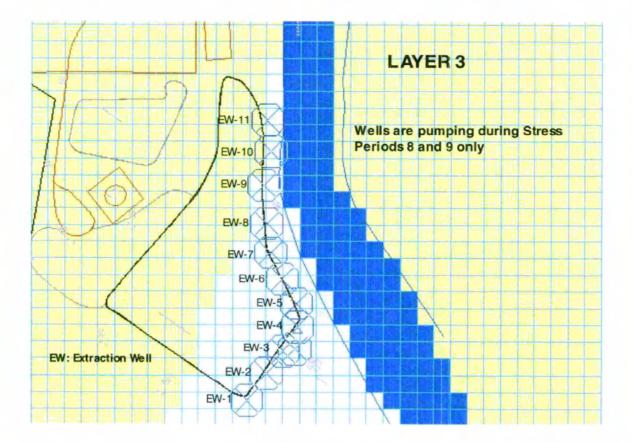
CO-3c and	LEOa-2	l			
	ress	Wells -	Volume	Dr	ain
Period	Step	ft ³ /day	gpm	ft ³ /day	gpm
8	1	0	0	184,220	957
	2	0	0	177,890	924
	3	0	0	176,910	919
	4	0	0	176,490	917
	5	0	0	176,250	916
	6	0	0	176,090	915
9	1	0	0	176,010	914
	2	0	0	175,860	914
	3	0	0	175,770	913
	4	0	0	175,690	913
	5	0	0	175,550	912
	6	0	0	175,510	912
	7	0	0	175,510	912
	8	0	0	175,420	911
	9	0	0	175,380	911
	10	0	0	175,340	911
	11	0	0	175,300	911
	12	0	0	175,300	911
	13	0	0	175,300	911
	14	· 0	0	175,300	911
	15	0	0	175,300	911
	16	0	0	175,300	911
	17	0	0	175,300	911
	18	0	0	175,300	911
	Average	0	0	176,095	915

CO-3c and	LEOb-2	1			
Sti	ress	Wells -	Volume	Dr	ain
Period	Step	ft³/day	gpm	ft ³ /day	gpm
8	1	. 0	0	265,290	1378
	2	0	0	257,940	1340
1	3	0	0	256,890	1334
	4	0	0	256,470	1332
]	5	. 0	0	256,240	1331
	6	0	0	256,060	1330
9	1	0	0	255,940	1330
	2	0	0	255,800	1329
	3	0	0	255,680	1328
	. 4	0	0	255,650	1328
	5	0	0	255,530	1327
ſ	6	0	0	255,490	1327
	7	0	0	255,470	1327
	8	0	0	255,380	1327
	9	0	0	255,310	1326
	10	0	0	255,280	1326
	11	. 0	0	255,280	1326
	12	, 0	0	255,280	1326
	13	0	0	255,280	1326
	14	0	0	255,280	1326
	15	. 0	0	255,240	1326
	16	0	0	255,240	1326
	17	0	0	255,240	1326
	18	0	0	255,240	1326
	Average	0	0	256,104	1330

#### Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3 Table D-4 (continued)

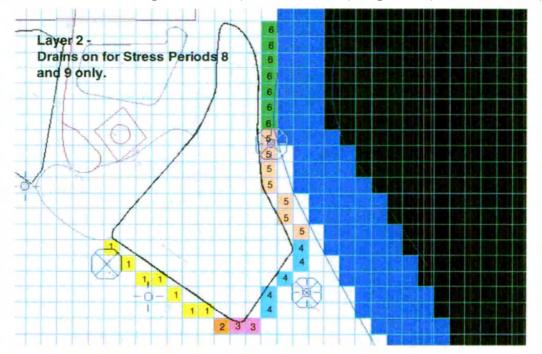
CO-3c and LEOb-3

Hutsonville Pond D Leachate Collection Scenarios Estimated Discharge Volumes (MODFLOW Data)


CO-3c and	LEOa-3				
Str	ess	Wells - Volume		Drain	
Period	Step	ft ³ /day	gpm	ft³/day	gpm
8	1	0	0	14,196	74
	2	0	0	12,799	66
	3	0	0	12,530	65
	4	0	0	12,374	64
	5	0	0	12,250	64
	6	0	0	12,162	63
9	1	0	0	12,115	63
	2	0	0	12,079	63
	3	0	0	12,035	63
	4	0	0	11,999	62
	5	0	0	11,942	62
	6	0	0	11,911	62
	7	0	0	11,895	62
	8	0	0	11,861	62
	9	0	0	11,843	62
	10	0	0	11,835	61
	11	0	0	11,812	61
	12	0	0	11,812	61
	13	0	0	11,812	61
	14	0	0	11,807	61
	15	0	0	11,807	61
	16	0	0	11,807	61
	17	0	0	11,807	61
	18	0	0	11,807	61
	Average	0	0	12,096	63

Stress		Wells - Volume		Drain	
Period	Step	ft³/day	gpm	ft ³ /day	gpm
8	1	0	0	28,417	148
	2	0	0	26,187	136
	3	0	0	25,782	134
	4	0	0	25,586	133
	5	0	0	25,487	132
	6	0	0	25,409	132
9	11	0	0	25,365	132
	2	0	0	25,319	132
	3	0	0	25,259	131
	4	0	0	25,241	131
	5	0	0	25,197	131
	6	0	0	25,176	131
	7	0	0	25,137	131
	8	0	0	25,124	131
	9	0	0	25,101	130
	10	0	0	25,078	130
	11	· 0	0	25,080	130
	12	, 0	0	25,065	130
	13	0	0	25,067	130
	14	0	0	25,065	130
	15	0	0	25,065	130
	16	0	0	25,067	130
	17	0	0	25,067	130
	18	0	0	25,067	130
	Average	0	0	25,392	132

CO-3c	and	LEOa-4


Stress		Wells -	Volume	Drain		
Period	Step	ft³/day gpm		ft ³ /day	gpm	
8	1	0	0	149,520	777	
• .	2	0	0	143,760	747	
	3	0	0	142,870	742	
	4 ·	0	0	142,510	740	
	5	0	. 0	142,290	739	
	6	0	0	142,150	738	
9	1	0	0	142,090	738	
	2	0	0	141,980	738	
	3	0	0	141,910	737	
	4	0	0	141,850	737	
	5		0	141,750	736	
	6	0	0	141,710	736	
	7	0	0	141,720	736	
	. 8	0	0	141,660	736	
	9	0	0	141,610	736	
	10	0	0	141,580	735	
	11	0	0	141,560	735	
	12	0	0	141,560	735	
	13	0	0	141,560	735	
	14	0	0	141,560	735	
	15	0	0	141,560	735	
	16	0	0	141,560	735	
	17	0	0	141,560	735	
	18	0	0	141,560	735	
	Average	0	0	142,227	739	

CO-3c and LEOb-4		1			1	
Str	ess	Wells -	Volume	Drain		
Period	Step	ft³/day	gpm	ft ³ /day	gpm	
8	1	0	0	183,440	953	
	2	0	0	176,740	918	
	3	· 0	0	175,770	913	
	4	0	0	175,390	911	
	5	· 0	0	175,210	910	
	6	0	0	175,070	909	
9	1	. 0	0	174,970	909	
	2	0	0	174,880	908	
	3	0	0	174,790	908	
	4	. 0	0	174,780	908	
	5	. 0	0	174,690	907	
	6	0	0	174,660	907	
	7	0	0	174,630	907	
	8	0	0	174,580	907	
	9	0	0	174,520	907	
	10	. 0	0	174,490	906	
	11	0	0	174,490	906	
	12	0	0	174,480	906	
	13	0	0	174,470	906	
	14	¹ 0	0	174,470	906	
	15	; 0	0	174,470	906	
	16	0	0	174,470	906	
	17	0	0	174,470	906	
	18	0	0	174,470	906	
	Average	0	0	175,183	910	



Extraction Wells	Top Layer of Screen	14.12.12	Pumping Rate (gallons/minute)	
EW-1 through EW-11	3	3	3850	20

Figure D-1. MODFLOW extraction well layout



Extraction	Leachate Extraction Option								
Туре	LEOa-1	LEOb-1	LEOa-2	LEOb-2	LEOa-3	LEOb-3	LEOa-4	LEOb-4	
Drain 1a	On	-	On	-	On	-	On	-	
Drain 2a	-	-	On	-	-	-	On	-	
Drain 3a		-	On	-	-	-	On	-	
Drain 4a	-	-	On	-	-	-	On	-	
Drain 5a	-	-	On	-	-	-	On	-	
Drain 6a	-	-	On	-	-	-	-	-	
Drain 1b	-	On	-	On	-	On	-	On	
Drain 2b	-	-	-	On	-	-	-	On	
Drain 3b	r.	-	-	On	-	-	-	On	
Drain 4b	-	-	-	On	-	-	-	On	
Drain 5b	-	-	-	On	-	-	-	On	
Drain 6b	X	-	-	On		-	-	-	
Wells	On	On	-	-	-	-	-	-	

Drain	Drain Length (feet)	Drain Pipe Diameter (feet)	Drain Bed Thickness (feet)	Drain Bed K (cm/s)	Drain Bed K (ft/day)	South/East Drain Base Elevation	North/West Drain Base Elevation	Layer	Drain Reach
1a	1000	3	1	0.1	283	440	423	2	1
2a	70	3	1	0.1	283	423	423	2	2
3a	105	3	1	0.1	283	423	422	2	3
4a	615	3	1	0.1	283	422	420	2	4
5a	710	3	1	0.1	283	420	425	2	5
6a	700	3	1	0.1	283	425	425	2	6
1b	1000	3	1	0.1	283	437	420	2	1
2b	70	3	1	0.1	283	420	420	2	2
3b	105	3	1	0.1	283	420	419	2	3
4b	615	3	1	0.1	283	419	417	2	4
5b	710	3	1	0.1	283	417	422	2	5
6b	700	3	1	0.1	283	422	422	2	6

Figure D-2. MODFLOW drain layout.



Figure D-3. HELP predicted percolation rates.

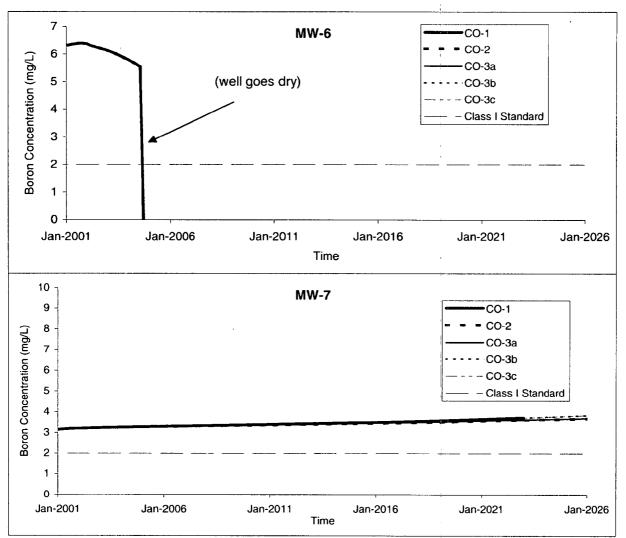



Figure D-4a. Predicted Boron concentrations for cover only scenarios.

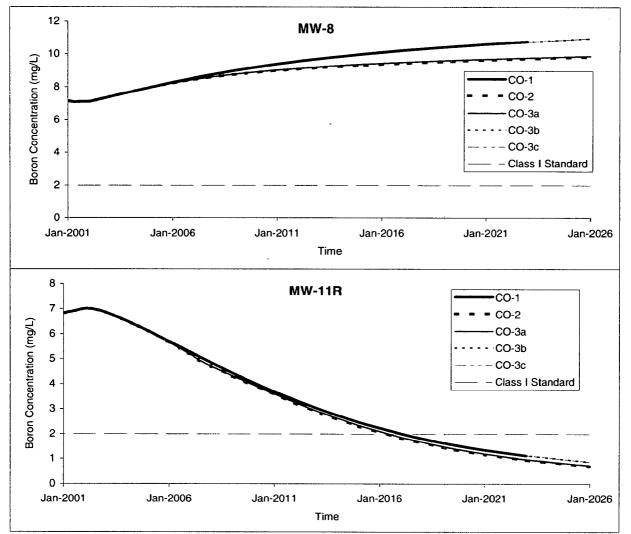



Figure D-4b. Predicted Boron concentrations for cover only scenarios.



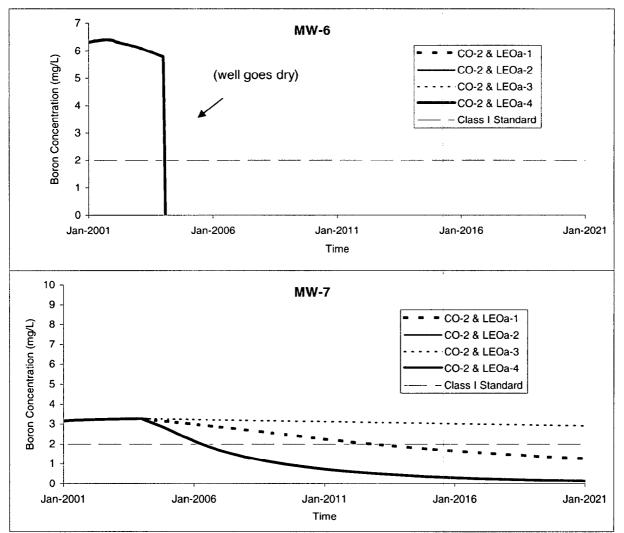



Figure D-5a. Predicted concentrations for the leachate collection scenarios.



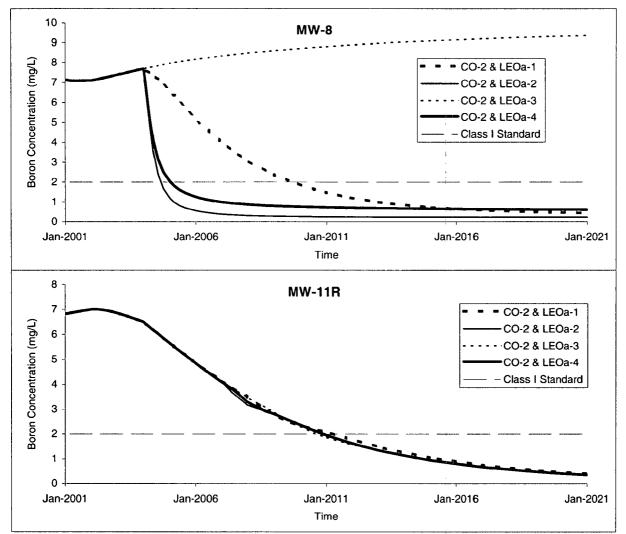



Figure D-5b. Predicted concentrations for the leachate collection scenarios.



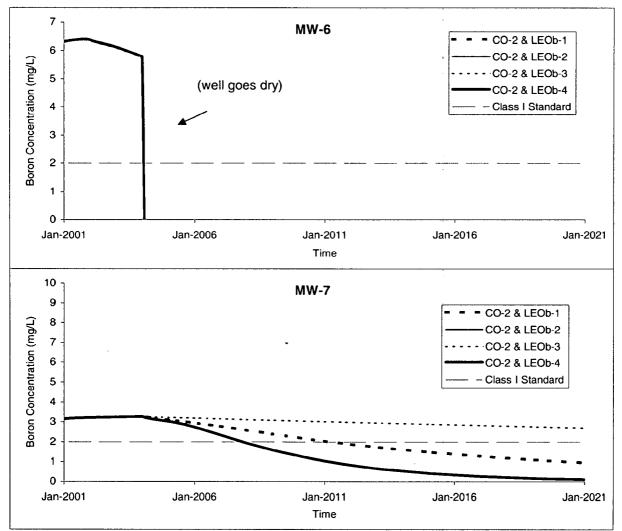



Figure D-5c. Predicted concentrations for the leachate collection scenarios.

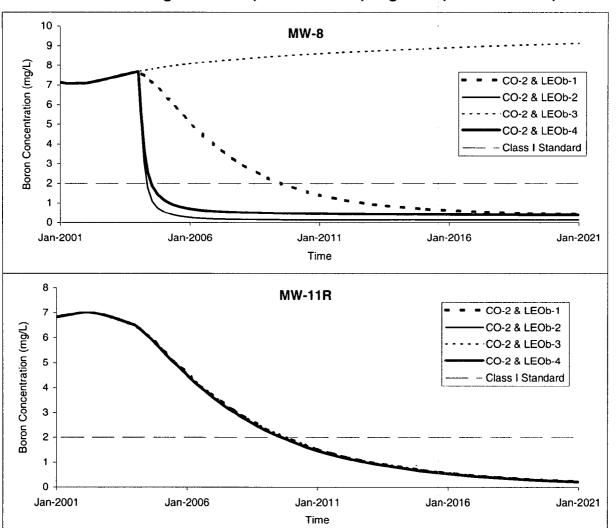



Figure D-5d. Predicted concentrations for the leachate collection scenarios.



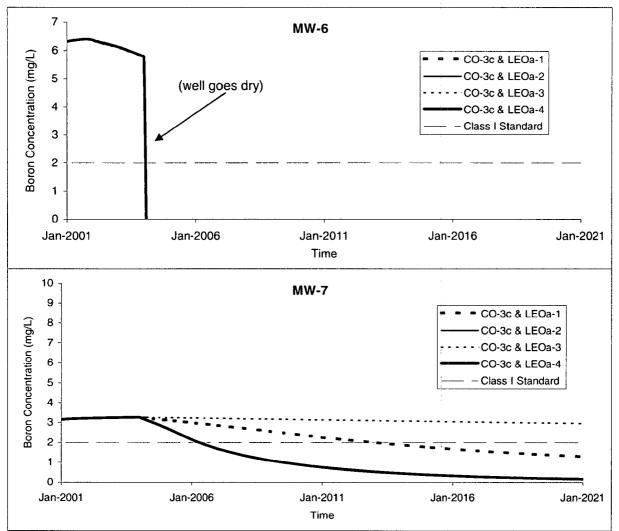



Figure D-5e. Predicted concentrations for the leachate collection scenarios.

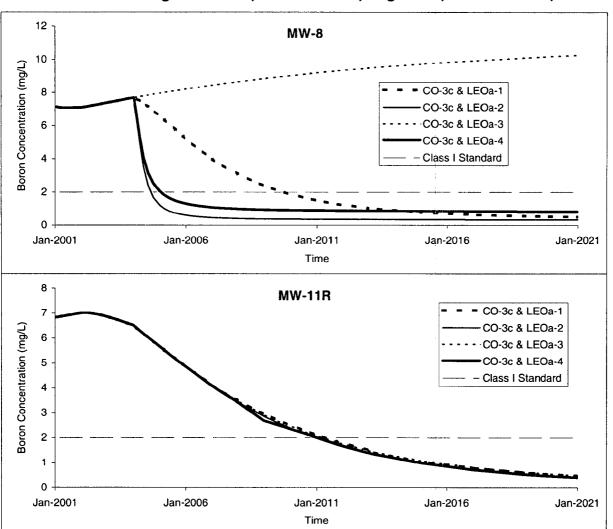



Figure D-5f. Predicted concentrations for the leachate collection scenarios.

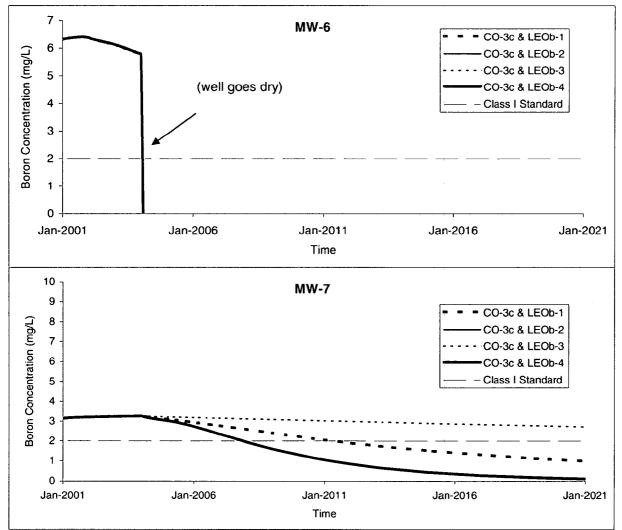



Figure D-5g. Predicted concentrations for the leachate collection scenarios.

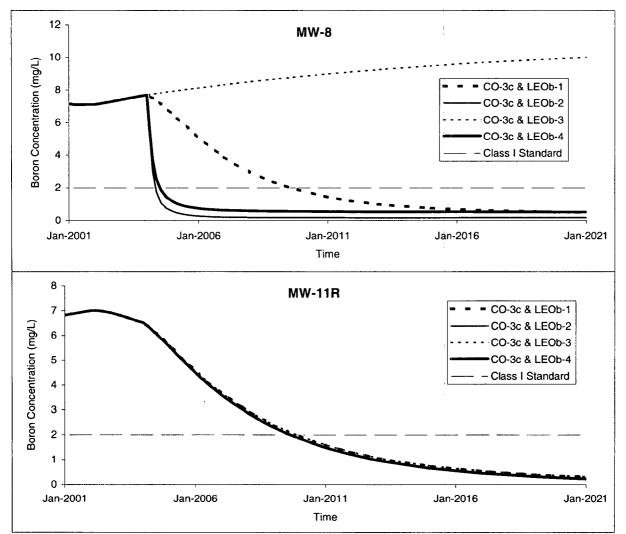



Figure D-5h. Predicted concentrations for the leachate collection scenarios.

### 1375 - Ameren Modeling Scenario's

The disk in the binder attached to this report contains the ASCII input files and output files used and generated by HELP, MODFLOW, and MT3D for each scenario. The files are named as follows:

HELP Model Scenarios	Layering Bottom to Top, Thickness (foot)
CO-1	3 foot Earth
CO-2	Geosynthetic Layer, 3 foot Earth
CO-3a	3 foot Pozzolonic Layer (K=1x10 ⁻⁷ ), 3 foot Earth Layer
CO-3b	3 foot Pozzolonic Layer (K=1x10 ⁻⁶ ), 3 foot Earth Layer
CO-3c	3 foot Pozzolonic Layer (K=1x10 ⁻⁵ ), 3 foot Earth Layer

MODFLOW/MT3DMS Model Scenarios	Layering Bottom to Top, Thickness (foot)	Leachate Extraction Option (LEO)
CO-1	3 foot Earth	None
CO-2	Geosynthetic Layer, 3 foot Earth	None
CO-3a	3 foot Pozzolonic Layer (K=1x10 ⁻⁷ ), 3 foot Earth Layer	None
CO-3b	3 foot Pozzolonic Layer (K=1x10 ⁻⁶ ), 3 foot Earth Layer	None
CO-3c	3 foot Pozzolonic Layer (K=1x10 ⁻⁵ ), 3 foot Earth Layer	None
CO-2 & LEOa-1	Geosynthetic Layer, 3 foot Earth	11 Extraction Wells (East); 1000 foot Trench (South)
CO-3c & LEOa-1	3 foot Pozzolonic Layer (K=1x10 ⁻⁵ ), 3 foot Earth Layer	11 Extraction Wells (East); 1000 foot Trench (South)
CO-2 & LEOb-1	Geosynthetic Layer, 3 foot Earth	11 Extraction Wells (East); 1000 foot Trench (South)
CO-3c & LEOb-1	3 foot Pozzolonic Layer (K=1x10 ⁻⁵ ), 3 foot Earth Layer	11 Extraction Wells (East); 1000 foot Trench (South)
CO-2 & LEOa-2	Geosynthetic Layer, 3 foot Earth	3200 foot Trench
CO-3c & LEOa-2	3 foot Pozzolonic Layer (K=1x10 ⁻⁵ ), 3 foot Earth Layer	3200 foot Trench
CO-2 & LEOb-2	Geosynthetic Layer, 3 foot Earth	3200 foot Trench
CO-3c & LEOb-2	3 foot Pozzolonic Layer (K=1x10 ⁻⁵ ), 3 foot Earth Layer	3200 foot Trench
CO-2 & LEOa-3	Geosynthetic Layer, 3 foot Earth	1000 foot Trench
CO-3c & LEOa-3	3 foot Pozzolonic Layer (K=1x10 ⁻⁵ ), 3 foot Earth Layer	1000 foot Trench
CO-2 & LEOb-3	Geosynthetic Layer, 3 foot Earth	1000 foot Trench
CO-3c & LEOb-3	3 foot Pozzolonic Layer (K=1x10 ⁻⁵ ), 3 foot Earth Layer	1000 foot Trench
CO-2 & LEOa-4	Geosynthetic Layer, 3 foot Earth	2500 foot Trench
CO-3c & LEOa-4	3 foot Pozzolonic Layer (K=1x10 ⁻⁵ ), 3 foot Earth Layer	2500 foot Trench
CO-2 & LEOb-4	Geosynthetic Layer, 3 foot Earth	2500 foot Trench
CO-3c & LEOb-4	3 foot Pozzolonic Layer (K=1x10 ⁻⁵ ), 3 foot Earth Layer	2500 foot Trench

### **APPENDIX E**

### STATISTICAL CALCULATIONS

### Hutsonville Ash Impoundment Statistical Summary for Pooled Locations

0.00 0.00 0.00 0.00 0.00 Non-Detects 0.00 0.00 % of Normal / No / Yes No / No No / No Yes / Yes Log Normal Yes / Yes Yes / Yes Yes / Yes x 0.5 Units/yr Sen Slope 15.543 0.000 -0.408 -0.102 -4.016-4.276 -0.011 **Option for LT Pts:** Std Dev 0.548 33.975 0.047 9.955 0.348 15.557 52.392 170.000 0.570 280.000 Minimum 7.300 19.000 0.052 56.000 **User Supplied Information** 8.440 Median Maximum 2.977 470.000 0.240 96.000 74.000 300.000 225.000 370.000 0.092 77.000 0.825 7.457 49.500 Mean 1.0667.595 374.414 230.846 0.111 76.481 47.571 26 27 28 28 28 28 29 29 Count MW7D, MWTW Date Range: 01/01/1998 to 01/03/2005 mg/L Units mg/L mg/L mg/L Alkalinity, total (lab), (mg/L as Grg/L Total Filterable Residue (TDS) mg/L std **Pooled Locations:** Manganese, total Calcium, total Sulfate, total Boron, total pH (field) Parameter

-

.

Confidence Level: Solution: Solution: Compliance Locations: MW		ided % ral Log MWTW MWTW	Option for LT Pts: Background Date Range: Compliance Date Range: Tolerance Coverage (Gamma):		x 0.5 01/01/1998 to 03/16/2005 01/01/1998 to 03/16/2005 95%		
BACKGROUND							
<u>Parameter Code</u> 01022			<u>Units</u> mg/L				
Pooled Results: <u>Normal</u> No	<u>Mean</u> 0.100	<u>StdDev</u> 1.467	<u>K Value</u> 2.514	<u>TL (Lower)</u> 0.038	<u>TU (Upper)</u> 0.261		
Location	Type		Total Pts	LT Pts	<u>% LT Pts</u>		
MW7D	Alluvial A	Aq.	17	0	0.000		
MWTW			13	0	0.000		

Probability Distribution:One sidedConfidence Level:99.00%Data Transformation:NoneCompliance Locations:MW7D, MWTWBackground Locations:MW7D, MWTW		% 1WTW	Option for LT Pts: Background Date Range: Compliance Date Range: Tolerance Coverage (Gamma):		x 0.5 01/01/1998 to 03/16/2005 01/01/1998 to 03/16/2005 95%	
BACKGROUNI	)					
Parameter CodeParameter NameUnits00410Alkalinity, total (lab), (mg/L as CACO3)mg/L						
Pooled Results: <u>Normal</u> Yes	<u>Mean</u> 229.000	<u>StdDev</u> 33.636	<u>K Value</u> 2.557	<u>TL (Lower)</u> 143.006	<u>TU (Upper)</u> 314.994	
Location	Type		<u>Total Pts</u>	LT Pts	<u>% LT Pts</u>	
MW7D	Alluvial A	.q.	16	0	0.000	
MWTW			12	0	0.000	

Probability Distribution:One sidedConfidence Level:99.00%Data Transformation:NoneCompliance Locations:MW7D, MWTWBackground Locations:MW7D, MWTW		Option for LT Background D Compliance Da Tolerance Cov	ate Range:	x 0.5 01/01/1998 to 03/16/2005 01/01/1998 to 03/16/2005 95%	
BACKGROUND	)				
Parameter CodeParameter Name00916Calcium, total			<u>Units</u> mg/L		
Pooled Results: <u>Normal</u> Yes	<u>Mean</u> 75.276	<u>StdDev</u> 10.613	<u>K Value</u> 2.535	<u>TL (Lower)</u> 48.377	<u>TU (Upper)</u> 102.175
<u>Location</u>	Type		Total Pts	LT Pts	<u>% LT Pts</u>
MW7D	Alluvial A	Aq.	17	0	0.000
MWTW			12	0	0.000

Probability Distribution:One sidedConfidence Level:99.00%Data Transformation:NoneCompliance Locations:MW7D, MWTWBackground Locations:MW7D, MWTW		Option for LT Background D Compliance D Tolerance Cov	ate Range:	x 0.5 01/01/1998 to 03/16/2005 01/01/1998 to 03/16/2005 95%	
BACKGROUND	)				
Parameter CodeParameter Name00945Sulfate, total			<u>Units</u> mg/L		
Pooled Results: <u>Normal</u> Yes	<u>Mean</u> 46.933	<u>StdDev</u> 15.243	<u>K Value</u> 2.514	<u>TL (Lower)</u> 8.614	<u>) TU (Upper)</u> 85.253
Location	<u>Type</u>		<u>Total Pts</u>	LT Pts	<u>% LT Pts</u>
MW7D	Alluvial A	Aq.	17	0	0.00
MWTW			· J 13	0	0.00

### May 4, 2005 Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit \$53:12 AM

### Hutsonville Ash Impoundment Normal Tolerance Interval on Background Background Data Pool

Probability Distribution: Confidence Level:	One sided 99.00%	Option for LT Pts: Background Date Range:	x 0.5 01/01/1998 to 03/16/2005
Data Transformation:	None	Compliance Date Range: Tolerance Coverage (Gamma):	01/01/1998 to 03/16/2005 95%
Compliance Locations: Background Locations:	MW7D, MWTW MW7D, MWTW	Tolerance Coverage (Gamma).	2370

### BACKGROUND

<u>Parameter Code</u> 70300				<u>Units</u> mg/L	
Pooled Results: <u>Normal</u> Yes	<u>Mean</u> 367.355	<u>StdDev</u> 57.650	<u>K Value</u> 2.495	<u>TL (Lower)</u> 223.541	<u>TU (Upper)</u> 511.168
Location	Type		<u>Total Pts</u>	LT Pts	<u>% LT Pts</u>
MW7D	Alluvial Aq.		18	0	0.00
MWTW			13	0	0.00

### May 4, 2005 10:17:44 AM

# Hutsonville Ash Impoundment Statistical Summary for Pooled Background Locations MW-1 and MW-10

	l/ % of I Non-Detects		s 0.00					
	Normal / Log Normal	No / Nc	No / Yes	N0 / N(	No / Ye	N0 / N(	N0 / N(	Yes / No
x 0.5	Sen Slope Units/yr	4.838	-0.006	1.248	-0.010	-0.033	-1.610	3.734
<b>Option for LT Pts:</b>	Std Dev	63.628	0.059	21.875	0.523	0.228	30.116	69.797
Option	Minimum	98.000	0.059	33.000	0.001	7.030	10.000	180.000
formation	Maximum	332.000	0.400	160.000	3.670	7.960	270.000	470.000
User Supplied Information	Median	240.000	0.130	80.000	0.097	7.350	34.000	329.000
User S	Mean	226.208	0.139	75.111	0.270	7.387	40.267	321.765
	Count	101	101	101	101	83	101	102
98 to 01/03/2005 MW1, MW10	Units	mg/L	mg/L	mg/L	mg/L	std	mg/L	mg/L
Date Range: 01/01/1998 to 01/03/2005 Pooled Locations: MW1, MW	Parameter	Alkalinity, lab	B, tot	Ca, tot	Mn, tot	pH (field)	SO4, tot	TDS

-

Probability Distribution:One sidedConfidence Level:1.00%Data Transformation:Natural LogCompliance Locations:MW1, MW10Background Locations:MW1, MW10		Option for LT Background D Compliance D Tolerance Cov	ate Range:	x 0.5 01/01/1998 to 01/03/2005 01/01/1998 to 01/03/2005 : 95%	
BACKGROUND					•
Parameter CodeParameter Name01022Boron, total			<u>Units</u> mg/L		
Pooled Results: <u>Normal</u> Yes	<u>Mean</u> 0.139	<u>StdDev</u> 0.059	<u>K Value</u> 1.925	<u>TL (Lowe</u> 0.061	· · · · · · · · · · · · · · · · · · ·
Location	Type		<u>Total Pts</u>	LT Pts	<u>% LT Pts</u>
MW1	Upper Zo	ne	84	0	0.000
MW10	Upper Zo	one	17	0	0.000

Probability Distribut Confidence Level: Data Transformation Compliance Location Background Location	1.00% n: Natu ns: MW1, M	% ral Log W10	Option for LT Pts: Background Date Range: Compliance Date Range: Tolerance Coverage (Gamma):		x 0.5 01/01/1998 to 01/03/2005 01/01/1998 to 01/03/2005 95%		
BACKGROUND							
Parameter CodeParameter Name01055Manganese, total			<u>Units</u> mg/L				
Pooled Results: <u>Normal</u> Yes	<u>Mean</u> 0.270	<u>StdDev</u> 0.523	<u>K Value</u> 1.925	<u>TL (Lower)</u> 0.003	<u>TU (Upper)</u> 2.287		
Location	<u>Туре</u>		<u>Total Pts</u>	LT Pts	<u>% LT Pts</u>		
MWI	Upper Zo	one	84	4	4.762		
MW10	Upper Zo	one	17	0	0.000		

,

Probability Distribution: Confidence Level:	One sided 1.00%	Option for LT Pts: Background Date Range:	x 0.5 01/01/1998 to 01/03/2005
Data Transformation:	None	Compliance Date Range:	01/01/1998 to 01/03/2005
Compliance Locations: Background Locations:	MW1, MW10 MW1, MW10	Tolerance Coverage (Gamma):	95%

### BACKGROUND

<u>Parameter Code</u> 70300		e <u>r Name</u> terable Residue	(TDS)	<u>Units</u> mg/L	
Pooled Results: <u>Normal</u> Yes	<u>Mean</u> 321.765	<u>StdDev</u> 69.797	<u>K Value</u> 1.923	<u>TL (Lower)</u> 187.522	<u>TU (Upper)</u> 456.008
Location MW1	<u>Type</u> Upper Zor	ne	<u>Total Pts</u> 84	<u>LT Pts</u> 0	<u>% LT Pts</u> 0.000
MW10	Upper Zo	ıe	18	0	0.000

## Hutsonville Ash Impoundment Data used in Background Statistical Calculations

Well Id	Date	Lab Id	Alkalinity, Tot, Boron, Tot, mg/L	.on, Tot, mg/L	Calcium, Tot,	Manganese, Tot,	pH (field), std	Sulfate, Tot,
	Sampled		mg/L		mg/L	mg/L		mg/L
IWN	01/06/1998		228.000	0.167	82.000	<0.005	7.52	1.6 .
	02/09/1998		240.000	0.134	108.000	0.125	7.17	. 88
	03/24/1998		128.000	0.122	44.000	<0.005		55
	04/14/1998		116.000	0.295	44.000	<0.005	7.61	50
	05/27/1998	*	160.000	0.090	56.000	0.020		38
	06/24/1998		188.000	0.203	68.000	0.040	7.48	32
	07/21/1998		268.000	0.160	80.000	0.181	7.11	22
	8661/12/80		284.000	0.110	92.000	0.438	7.48	16
	09/28/1998		264.000	0.150	88.000	0.043	7.14	22
	10/26/1998		240.000	0.251	80.000	0.185	7.22	270
	11/16/1998	W98-794	222.000	0.098	80.000	0.060		26
	12/16/1998		270.000	0.079	108.000	0.582	7.06	29
	01/19/1999	W99-44	128.000	0.122	56.000	0.017	7.96	53
	02/24/1999	AC01231	100.000	0.139	44.000	0.005	7.44	47
	03/30/1999	AC01258	98.000	0.185	40.000	0.034		42
	04/30/1999	AC01681	126.000	0.256	88.000	0.155	7.90	34
	05/24/1999	AC01895	210.000	0.241	64.000	0.598		27
	06/29/1999		224.000	0.129	76.000	0.440	7.20	30
	07/26/1999		308.000	0.160	92.000	0.623	7.20	33
	08/30/1999		284.000	0.150	88.000	0.261	7.10	19
	09/28/1999		272.000	0.080	96.000	0.147	7.50	39
	10/29/1999		250.000	0.130	93.000	0:071	7.50	54
	11/30/1999		254.000	0.150	63.000	0.016	7.90	. 64
	12/27/1999		247.000	0.250	48.000	0.040	7.70	56
	01/28/2000		259.000	0.240	72.000	0.030	7.66	49
	02/28/2000		244.000	0.110	84.000	0.162	7.68	45
	03/31/2000		138.000	090.0	52.000	0.011	7.39	75
	04/29/2000		126.000	0.130	56.000	<0.005	7.57	48
	05/22/2000		265.000	0.100	87.000	0.397	7.25	59
	07/03/2000		290.000	0.090	80.000	0.247	7.20	40
	08/02/2000		292.000	0.110	87.000	0.228	7.40	22
	08/31/2000		260.000	0.140	73.000	0.243		21
	09/29/2000		289.000	0.120	85.000	0.113	7.35	24
	10/31/2000	•	251.000	0.220	77.000			30
	11/30/2000		220.000	0.100	42.000			28
	12/30/2000		169.000	0.400	58.000	-	7.14	25
	01/30/2001		177.000	0.240	53.300		7.42	20

MANAGES

Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3

## Hutsonville Ash Impoundment Data used in Background Statistical Calculations

	Alkalinity Tot Roron Tot mo/L	. Tot. mo/l.	Calcium, Tot. N	Manganese, Tot	nH (field), std	Sulfate Tot
				mg/L		mg/L
03/31/2001	166.000	0.130	49.900	1.088	7.57	24
04/30/2001	202.000	0.140	56.000	1.242	. 7.27	17
05/31/2001	314.000	0.060	81.000	3.670	7.40	12
06/29/2001	302.000	0.080	88.000	2.524	7.33	10
07/31/2001	332.000	0.090	100.000	1.014	7.39	10
08/28/2001	296.000	0.070	89.000	0.384	7.28	28
09/28/2001	288.000	0.100	100.000	0.196	7.34	45
10/31/2001	224.000	0.250	88.000	0.057	7.31	117
11/28/2001	196.000	0.170	76.000	0.135	7.29	64
12/18/2001	176.000	0.230	69.000	0.097	7.33	53
01/14/2002	180.000	0.170	58.000	0.180	7.30	57
02/25/2002	140.000	0.150	44.000	0.069	7.77	43
03/25/2002	120.000	0.150	35.000	0.098		40
04/23/2002	110.000	0.150	33.000	0.130	7.43	37
05/23/2002	140.000	0.170	42.000	0.420	7.38	25
06/27/2002	250.000	0.098	74.000	0.690	7.45	24
07/30/2002	330.000	0.110	96.000	0.091	7.41	30
08/31/2002	300.000	0.160	96.000	0.014	7.51	63
09/17/2002 02092695-1	290.000	0.150	000.66	0.042	7.53	68
10/17/2002	290.000	0.310	160.000	0.019		80
11/21/2002		0.140	90.00	0.150	7.12	
11/25/2002	290.000				7.20	49
12/11/2002 02122282-1	300.000	0.180	96.000	0.270	7.09	39
01/08/2003	180.000	0.140	67.000	0.270		84
02/05/2003	200.000	0.140	76.000	0.053	7.21	87
03/17/2003	110.000	0.120	41.000	0.003		. 48
04/07/2003	110.000	0.140	37.000	0.001		38
05/03/2003	140.000	0.140	40.000	0.014		37
06/02/2003	190.000	0.110	56.000	0.072		25
07/07/2003	320.000	0.092	85.000	0.240	7.32	20
08/04/2003	280.000	0.110	85.000	0.047	,	19
09/08/2003	240.000	0.065	87.000	0.022		18
10/06/2003	270.000	0.093	80.000	0.070		17
11/03/2003	290.000	0.093	78.000	0.120		16
12/01/2003	240.000	0.160	75.000	0.013		50
01/05/2004	230.000	0.100	60.000	0.041	7.09	40
02/09/2004	140.000	0.150	42.000	0.025	7.50	40

MANAGES

ł

Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3

## Hutsonville Ash Impoundment Data used in Background Statistical Calculations

Date Range	Date Range: 01/01/1998 to 03/16/2005						
		Alkalinity, Tot, Boron, Tot, mg/L	n, Tot, mg/L	Tot,	, Tot,	pH (field), std	Sulfate, Tot,
		mg/L		mg/L	mg/L		mg/L
MWI	04/04/2004	140.000	0.120	40.000	0.044	7.50	. 35
	05/04/2004	210.000	0.100	55.000	0.280	7.30	15
	06/01/2004	290.000	0.067	77.000	0.220	7.30	15
	08/02/2004	290.000	0.099	86.000	0.170		15
	09/13/2004	280.000	0.098	80.000	0.100	7.60	20
	10/04/2004	300.000	0.140	85.000	0.047	7.30	18
	11/08/2004	280.000	0.110	85.000	0.130	7.20	35
	12/06/2004	240.000	0.140	84.000	0.260	7.20	51
	01/03/2005	160.000	0.170	48.000	0.180	7.30	42
<b>MW10</b>	11/16/1998 W98-800	108.000	0.104	80.000	0.110	7.80	30
	01/20/1999 W99-54	212.000	0.115	78.000	0.070	7.78	32
	02/26/1999 AC01242	206.000	0.099	80.000	0.101	7.18	29
	03/30/1999 AC01268	208.000	0.085	76.000	0.092	7.95	32
	04/30/1999 AC01692	224.000	0.149	80.000	0.079	7.50	27
	01/14/2002	280.000	0.160	94.000	0.017		32
	09/17/2002 02092695-7	7 270.000	0.098	90.00	0.100	7.11	31
	12/19/2002 02123013-5	-5 260.000	0.200	86.000	0.004	7.06	38
	02/05/2003	230.000	0.079	76.000	0.001	7.21	38
	05/03/2003	300.000	0.076	80.000	0.002		38
	07/07/2003	240.000	0.092	89.000	× 0.022		44
	09/08/2003	260.000	0.059	96.000	0.013		38
	10/13/2003	220.000	0.120	100.000	0.019		36
	03/02/2004	220.000	0.064	100.000	0.008	7.10	31
	04/04/2004	230.000	0.086	100.000	0.029	7.10	29
	08/01/2004	270.000	0.130	120.000	0.045		29
	10/04/2004	330.000	0.160	110.000	0.040	7.10	31
<b>MW7D</b>	11/18/1998 W98-805	172.000	0.066	60.000	0.727	7.90	40
	01/19/1999 W99-52	216.000	0.093	82.000	0.996	7.51	63
	02/26/1999 AC01239	234.000	0.104	92.000	1.431	8.28	67
	03/30/1999 AC01266	240.000	0.088	96.000	2.977	8.44	74
	04/30/1999 AC01689		0.148	84.000	0.649	8.00	60
	01/15/2002	250.000	0.240	88.000	0.620		58
	09/18/2002 02092792-8	200.000	0.083	71.000	0.750	7.41	51
	12/19/2002 02123013-3	1-3 210.000	0.140	67.000	0.750	7.38	31
	03/19/2003	170.000	0.089	66.000	0.760		51
	06/02/2003	200.000	0.088	68.000	0.680		60
	08/11/2003	240.000	0.140	69.000	0.660	7.53	59
	10/13/2003	220.000	0.110	66.000	0.640		44

### MANAGES

Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3

## Hutsonville Ash Impoundment Data used in Background Statistical Calculations

		68	61	47	36	42	48	34	40	38	65	62	52	30	27	19	24	23	34
	Sulfate, Tot, mg/L																		
	pH (field), std	7.40	7.30		7.50	7.53	7.83		7.43	7.31			7.48		7.30	7.30		7.40	7.44
	Manganese, Tot, mg/L		0.830	0.570	0.660	0.450	1.055	2.000	1.400	1.200	0.930	0.820	1.100	0.760	2.100	1.200	1.400	1.400	0.640
	Calcium, Tot, M mg/L	89.000	85.000	81.000	85.000	61.000		70.000	77.000	78.000	83.000	74.000	71.000	56.000	86.000	72.000	72.000	77.000	57.000
		0.110	0.067	0.091	0.210	0.062	060.0	0.110	0.082	0.067	0.200	0.052	0.110	0.075	0.085	0.099	0.180	0.084	0.060
	Alkalinity, Tot, Boron, Tot, mg/L mg/L	260.000	.260.000	260.000	300.000	220.000		220.000	200.000	230.000	200.000	210.000	220.000	200.000	290.000	260.000	260.000	280.000	190.000
03/16/2005									02092792-6	02123013-8									
Date Range: 01/01/1998 to 03/16/2005		02/23/2004	04/19/2004	08/02/2004	10/04/2004	03/15/2005	10/03/2001	01/15/2002	09/19/2002	12/19/2002	03/17/2003	06/17/2003	08/11/2003	10/13/2003	02/23/2004	04/19/2004	08/01/2004	10/04/2004	03/16/2005
Date Range		MW7D					MWTW												

## Hutsonville Ash Impoundment Data used in Background Statistical Calculations

Well Id	Date Samped	Lab Id	TDS, mg/L		
	out in the out				
IMMI	01/06/1998		300		
	8661/60/20		408		
	03/24/1998		226		
	04/14/1998		224		
	05/27/1998		272		
	06/24/1998		290		
	07/21/1998		300		
	08/31/1998		350		
	09/28/1998		358		
	10/2/01		316		
	11/16/1998	W98-794	306		
	12/16/1998		334		
	01/19/1999	W99-44	254		
	02/24/1999	AC01231	230		
	03/30/1999	AC01258	186		
	04/30/1999	AC01681	234		
	05/24/1999	AC01895	280		
	06/29/1999		340		
	07/26/1999		. 396		
	08/30/1999		276		
	09/28/1999		376		
	10/29/1999		394		
	11/30/1999		394		
	12/27/1999		376		
	01/28/2000		398		
	02/28/2000		384		
	03/31/2000		286		
	04/29/2000		258		
	05/22/2000		384		
	07/03/2000		458		
	08/02/2000		372		
	08/31/2000		334	-	
	09/29/2000		. 342		
	10/31/2000		340		
	11/30/2000		314		
	12/30/2000		220		
	01/30/2001		246		

Date Range: 01/01/1998 to 03/16/2005 MW1 03/31/2001
04/30/2001 05/31/2001 05/31/2001 07/31/2001 09/28/2001 10/31/2001 10/31/2001 10/31/2002 09/25/2002 05/25/2002 05/23/2002 05/27/2002 06/27/2002 06/27/2002 07/30/2002 07/30/2002 07/30/2002 07/30/2002 07/30/2003 07/30/2003 07/30/2003 07/30/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/2003 07/07/07/07/07/07/07/07/07/07/07/07/07/0

S																																								
Hutsonville Ash Impoundment Data used in Background Statistical Calculations																																								
Hutsonville / Data used in Backgro	2	TDS, mg/L	260	290	330	370	340	360	300	260	326	278	330	314	328	370	370	380	330	310	270	340	380	450	410	390	450	470	780	402	402	432	460	420	420	370	320	350	390	370
	3/16/2005										W98-800	W99-54	AC01242	AC01268	AC01692			02092695-7	02123013-5										C08-86M	W99-52	AC01239	AC01266	AC01689			02092792-8	02123013-3			
	Date Range: 01/01/1998 to 03/16/2005		05/04/2004	06/01/2004	08/02/2004	09/13/2004	10/04/2004	11/08/2004	12/06/2004	01/03/2005	11/16/1998	01/20/1999	02/26/1999	03/30/1999	04/30/1999	01/14/2002	06/30/2002	09/17/2002	12/19/2002	02/05/2003	05/03/2003	07/07/2003	09/08/2003	10/13/2003	03/02/2004	04/04/2004	08/01/2004	10/04/2004	8/118/118	01/19/1999	02/26/1999	03/30/1999	04/30/1999	01/15/2002	07/01/2002	09/18/2002	12/19/2002	03/19/2003	06/02/2003	08/11/2003
	Date Range:		IWM								<b>MW10</b>																		MW7D											

## Hutsonville Ash Impoundment Data used in Background Statistical Calculations

			5	
Date Range: 01/01/1998 to 03/16/2005	1/01/1998 to (	03/16/2005		
		IT	TDS, mg/L	
MW7D	10/13/2003		320	
	02/23/2004		430	
	04/19/2004		440	
	08/02/2004		360	
	10/04/2004		420	
	03/15/2005		280	
MWTW	10/03/2001		376	
	01/15/2002		340	
	09/19/2002		340	
	12/19/2002	02123013-8	340	
	03/17/2003		340	
	06/17/2003		370	
	08/11/2003		310	
	10/13/2003		280	
	02/23/2004		470	
	04/19/2004		340	
	08/01/2004		350	
	10/04/2004		350	
	03/16/2005		250	

### **User Supplied Information**

Location ID:	MW1	Parameter Code:	01022
Location Class:	Background	Parameter:	Boron, total
Location Type:	Upper Zone	Units:	mg/L
Confidence Level:	95.00%	Period Length:	3 month(s)
		Limit Name:	State Std
		Averaged:	No

### **Trend Analysis**

-0.000028

0.111613

mg/L per day

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:

.

Median Slope:	-0.000021	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.000034	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000000	mg/L per day

Non-parametric Mann-Kendall Test for Trend1,075.000S Statistic:-1,075.000Z test:-3.405At the 95.0 % Confidence Level (two-tailed test):This trend is non-zero.

1

### **User Supplied Information**

Location ID:	<b>MW</b> 1	Parameter Code:	01022
Location Class:	Background	Parameter:	Boron, total
Location Type:	Upper Zone	Units:	mg/L
Confidence Level:	95.00%	Period Length:	3 month(s)
		Limit Name:	State Std
		Averaged:	No
		······································	······································

### **Trend Analysis**

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	-0.000018 0.048962	mg/L per day
Sen's Non-parametric estimate of the slope (two-tailed test)		
Median Slope:	-0.000013	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.000028	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000000	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	-496.000	
Z test:	-1.917	
At the 95.0 % Confidence Level (two-tailed test):	This trend	d is zero.

### **User Supplied Information**

Location ID: Location Class: Location Type: Confidence Level:	MW1 Background Upper Zone 95.00%	Parameter Code: Parameter: Units: Period Length: Limit Name: Averaged:	00410 Alkalinity, total (lab) mg/L 3 month(s) State Std No
	<u>Tr</u>	end Analysis	
	straight line		
Trend of the least squares	straight file		
Trend of the least squares s Slope (fitted to data): R-Squared error of fit:	straight fine	0.010109	ng/L per day

1.090

This trend is zero.

Sen's Non-parametric estimate of the slope (two-tailed test)		
Median Slope:	0.009509	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.008647	mg/L per day
Upper Confidence Limit of Slope, M2+1;	0.027739	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	283.000	

At the 95.0 % Confidence Level (two-tailed test):

MANAGES

Z test:

	User Supplied Info	ormation	
Location ID: Location Class: Location Type: Confidence Level:	MW1 Background Upper Zone 95.00%	Parameter Code: Parameter: Units: Period Length: Limit Name: Averaged:	00916 Calcium, total mg/L 3 month(s) State Std No
	Trend An	alysis	
Trend of the least squared squared squared squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared error of the squared	):	-0.001554 1 0.002704	mg/L per day
Median Slope: Lower Confidence I	stimate of the slope (two-tailed test) Limit of Slope, M1: Limit of Slope, M2+1:	-0.007660 1	mg/L per day mg/L per day mg/L per day
Non-parametric Mann-K S Statistic: Z test: At the 95.0 % Cor	Tendall Test for Trend	-203.000 -0.781 This trend i	is zero.

### **User Supplied Information**

Location ID:	MW1	Parameter Code:	01055
Location Class:	Background	Parameter:	Manganese, total
Location Type:	Upper Zone	Units:	mg/L
Confidence Level:	95.00%	Period Length: Limit Name: Averaged:	3 month(s) State Std No

### **Trend Analysis**

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	-0.000050 0.004394	mg/L per day
Sen's Non-parametric estimate of the slope (two-tailed test)		
Median Slope:	0.000000	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.000055	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000029	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	-42.000	
Z test:	-0.158	
At the 95.0 % Confidence Level (two-tailed test):	This tren	d is zero.

### **User Supplied Information**

Location ID:	MW1	Parameter Code:	00400
Location Class:	Background	Parameter:	pH (field)
Location Type:	Upper Zone	Units:	std
Confidence Level:	95.00%	Period Length:	3 month(s)
		Limit Name:	State Std
		Averaged:	No

### **Trend Analysis**

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	-0.000057 0.039521	std per day
Sen's Non-parametric estimate of the slope (two-tailed test)		
Median Slope:	-0.000059	std per day
Lower Confidence Limit of Slope, M1:	-0.000124	std per day
Upper Confidence Limit of Slope, M2+1:	0.000000	std per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	-331.000	
Z test:	-1.605	
At the 95.0 % Confidence Level (two-tailed test):	This tren	d is zero.

.

User	Supp	lied	Inform	nation
------	------	------	--------	--------

Location ID: Location Class: Location Type: Confidence Level:	MW1 Background Upper Zone 95.00%	Parameter Code: Parameter: Units: Period Length: Limit Name: Averaged:	00945 Sulfate, total mg/L 3 month(s) State Std No	
	<u>Tr</u>	rend Analysis		

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	-0.009142 0.042442	mg/L per day
Sen's Non-parametric estimate of the slope (two-tailed test)		
Median Slope:	-0.005285	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.010330	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000000	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	-495.000	
Z test:	-1.909	
At the 95.0 % Confidence Level (two-tailed test):	This tren	d is zero.

ı

User S	Supplie	d Infor	mation
--------	---------	---------	--------

Location ID: Location Class: Location Type: Confidence Level:	MW1 Background Upper Zone 95.00%	Parameter Code: Parameter: Units: Period Length: Limit Name: Averaged:	70300 Total Filterable Residue (TDS) mg/L 3 month(s) State Std No
	Tre	<u>1d Analysis</u>	
Trend of the least squar	res straight line		
Slope (fitted to data):		-0.007135 1	mg/L per day
Slope (litted to data)			
R-Squared error of f		0.005745	
R-Squared error of f			
R-Squared error of f	fit:	st)	mg/L per day
R-Squared error of f Sen's Non-parametric e	fit: estimate of the slope (two-tailed te	st) -0.008418	mg/L per day mg/L per day

S Statistic:	-204.000	
Z test:	-0.785	
At the 95.0 % Confidence Level (two-tailed test):	This trend is zero.	

1

### **APPENDIX F**

### **GROUNDWATER VELOCITY CALCULATION**

.

### Electronic Filing - Received, Clerks' Office, August 11, 2008--AS 09-1, Exhibit 3

Appendix F - Groundwater Velocity Calculation	
Leachate Management and Final Cover Alternatives Report	
Hutsonville Ash Management Facility - Unlined Ash Impoundment (Pond D) Closure	
Ameren Energy Generating - Hutsonville, Illinois	

$V = K i / n_e$	V = Groundwater Velocity	
	K = Hydraulic Conductivity	
	i = Hydraulic Gradient (unitless value)	
	$n_e = Effective Porosity$	

Nov-04

Contours	426 to	425 TW-117	Elevation	Distance
K =	6.83E+03 ft/yr.		Change	Change
i =	0.002	between contours identified above	(ft)	(ft)
n _e =	20 %		1 /	520 0.002
V =	6.83E+03 * 0.20	1.92E-03		
V =	66 feet/y	/ear	· · · · · · · · · · · · · · · · · · ·	

